1
|
Morin A, Culbert BM, Mehdi H, Balshine S, Turko AJ. Status-dependent metabolic effects of social interactions in a group-living fish. Biol Lett 2024; 20:20240056. [PMID: 39045657 PMCID: PMC11267398 DOI: 10.1098/rsbl.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied Neolamprologus pulcher, a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another. When individuals could see each other, subordinates had lower maximum metabolic rates and tended to take longer to recover following an exhaustive chase compared with dominants. In contrast, metabolic responses of dominants and subordinates did not differ when individuals could not see one another. These findings suggest that the presence of a dominant individual has negative metabolic consequences for subordinates, even in stable social groups with strong prosocial relationships.
Collapse
Affiliation(s)
- André Morin
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Victoria, Australia
| | - Brett M. Culbert
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | - Hossein Mehdi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Andy J. Turko
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Best C, Jennings K, Culbert BM, Flear K, Volkoff H, Gilmour KM. Too stressed to eat: Investigating factors associated with appetite loss in subordinate rainbow trout. Mol Cell Endocrinol 2023; 559:111798. [PMID: 36243201 DOI: 10.1016/j.mce.2022.111798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinates experience chronic social stress and suppression of food intake. Here we tested the hypothesis that inhibition of food intake reflects increased expression of anorexigenic (appetite inhibiting) signals and decreased expression of orexigenic (appetite stimulating) signals. Trout were confined in pairs for 1 or 4 days, or were confined in pairs for 4 days and then allowed to recover from social interactions for 2 or 4 days; sham fish were handled identically but held alone. Subordinates did not feed during social interaction and had lower food intake than dominants or shams during recovery. In parallel, plasma cortisol (∼18-26x) and liver leptin (lep-a1) transcript abundance (∼10-14x) were elevated in subordinates during social interaction but not recovery, suggesting that these factors contributed to the suppression of food intake. Fish deemed likely to become subordinate based on inhibition of food intake in response to a mild stressor also showed elevated liver lep-a1 transcript abundance (∼5x). The moderate response in these fish coupled with a correlation between liver lep-a1 and cortisol suggest that stress-induced elevation of cortisol increased liver lep-a1 transcript abundance in subordinate trout, contributing to stress-induced suppression of food intake.
Collapse
Affiliation(s)
- C Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Jennings
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - B M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Flear
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - H Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Nelson JA, Kraskura K, Lipkey GK. Repeatability of Hypoxia Tolerance of Individual Juvenile Striped Bass Morone saxatilis and Effects of Social Status. Physiol Biochem Zool 2019; 92:396-407. [PMID: 31141466 DOI: 10.1086/704010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chesapeake Bay is the primary nursery for striped bass (Morone saxatilis), which are increasingly being exposed to hypoxic waters. Tolerance to hypoxia in fish is generally determined by a single exposure of an isolated individual or by exposing large groups of conspecifics to hypoxia without regard to social status. The importance of social context in determining physiological responses to stressors is being increasingly recognized. To determine whether social interactions influence hypoxia tolerance (HT) in striped bass, loss of equilibrium HT was assessed in the same fish while manipulating the social environment around it. Small group settings were used to be more representative of the normal sociality experienced by this species than the paired encounters typically used. After establishing the dominance hierarchy within a group of fish, HT was determined collectively for the individuals in that group, and then new groups were constructed from the same pool of fish. Individuals could then be followed across multiple settings for both repeatability of HT and hierarchy position ( X ¯ = 4.2 ± 0.91 SD groups per individual). HT increased with repeated exposures to hypoxia ( P < 0.001 ), with a significant increase by a third exposure ( P = 0.004 ). Despite this changing HT, rank order of HT was significantly repeatable across trials for 6 mo ( P = 0.012 ). Social status was significantly repeatable across trials of different group composition ( P = 0.02 ) and unrelated to growth rate but affected HT weakly in a complex interaction with size. Final HT was significantly correlated with blood [hemoglobin] and hematocrit. The repeatability and large intraspecific variance of HT in juvenile striped bass suggest that HT is potentially an important determinant of Darwinian fitness in an increasingly hypoxic Chesapeake Bay.
Collapse
|
4
|
Culbert BM, Gilmour KM. Rapid recovery of the cortisol response following social subordination in rainbow trout. Physiol Behav 2016; 164:306-13. [PMID: 27317163 DOI: 10.1016/j.physbeh.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/29/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) confined in pairs form social hierarchies in which distinctive behavioural and physiological phenotypes distinguish dominant from subordinate fish. In particular, subordinate fish are characterized by inhibition of behaviours such as feeding and activity, by low growth rates, and by chronic elevation of circulating glucocorticoid stress hormone (cortisol) concentrations. To evaluate the ability of trout to recover from chronic social stress, pairs of fish were allowed to interact for 4d, and subordinate fish were then separated from dominant fish. Recovery was assessed using behavioural (position in the tank, latency to feed, and food consumed) and physiological (plasma cortisol and glucose concentrations, liver glycogen content, hepatosomatic index, specific growth rate, and gall bladder mass) indices. During 48 or 96h of recovery from the 4d interaction period, only plasma cortisol and glucose levels of subordinates returned to baseline values consistent with those of dominant and sham trout (fish that were handled like paired fish but housed singly). All other physiological variables failed to recover, likely owing to the absence of behavioural recovery, including continued inhibition of food intake even following separation from the dominant fish. Whereas subordinate fish exhibited an attenuated cortisol response to an acute netting stressor, 'recovered' subordinates mounted a cortisol response that was equivalent to those of dominant and sham fish. However, 'recovered' subordinates that were paired with a socially naïve conspecific were unable to achieve non-subordinate status. Collectively, these results indicate that recovery of the cortisol response precedes behavioural recovery from social subordination.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
Jeffrey JD, Gilmour KM. Programming of the hypothalamic-pituitary-interrenal axis by maternal social status in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2016; 219:1734-43. [PMID: 27045091 DOI: 10.1242/jeb.138826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 01/02/2023]
Abstract
The present study examined the effects of maternal social status, with subordinate status being a chronic stressor, on development and activity of the stress axis in zebrafish embryos and larvae. Female zebrafish were confined in pairs for 48 h to establish dominant/subordinate hierarchies; their offspring were reared to 144 h post-fertilization (hpf) and sampled at five time points over development. No differences were detected in maternal cortisol contribution, which is thought to be an important programmer of offspring phenotype. However, once zebrafish offspring began to synthesize cortisol de novo (48 hpf), larvae of dominant females exhibited significantly lower baseline cortisol levels than offspring of subordinate females. These lower cortisol levels may reflect reduced hypothalamic-pituitary-interrenal (HPI) axis activity, because corticotropin-releasing factor (crf) and cytochrome p450 side chain cleavage enzyme (p450scc) mRNA levels also were lower in larvae from dominant females. Moreover, baseline mRNA levels of HPI axis genes continued to be affected by maternal social status beyond 48 hpf. At 144 hpf, stress-induced cortisol levels were significantly lower in offspring of subordinate females. These results suggest programming of stress axis function in zebrafish offspring by maternal social status, emphasizing the importance of maternal environment and experience on offspring stress axis activity.
Collapse
Affiliation(s)
- Jennifer D Jeffrey
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
6
|
Song WT, Wang ZJ, Liu HC. Effects of individual and binary mixtures of estrogens on male goldfish (Carassius auratus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1927-1935. [PMID: 25154921 DOI: 10.1007/s10695-014-9980-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
Adverse effects of five typical environmental estrogens, namely estrone (E1), 17β-estradiol (E2), 4-n-octylphenol (4-n-OP), 4-n-nonylphenol (4-n-NP) and bisphenol A (BPA) on adult male goldfish (Carassius auratus) were investigated both individually and in binary mixtures, using serum vitellogenin (VTG) induction and gonadosomatic index (GSI) as the endpoints. Doses of individual and binary mixtures of estrogens were chosen at broad ranges. Five individual estrogens induced common dose-dependent increases of serum VTG in the experimental fish when injection doses of the estrogen series were comparatively low. The levels of VTG induction in fish descended after peaked at a certain dose of the individual estrogen. Significant GSI decreases were observed in fish treated by all dose series of E1 and E2, and comparatively high doses of 4-n-OP, 4-n-NP and BPA when compared with that of solvent control (SC). Effects of binary mixtures of the five typical estrogens on VTG induction in male goldfish were in additive manner at low-effect doses, but divergences occurred at high dose levels, with the predicted effects by additive manner exceeding those were observed. All of GSI of fish treated by the binary mixtures were about or lower than 10(-3)%. Serious atrophy of gonads was observed in all the mixture treatment groups when compared with that of SC. These findings highlight the potential reproductive risk of fish resulted from existing mixtures of hormones in the aquatic environment, and they have important implications for environmental estrogen hazard assessment.
Collapse
Affiliation(s)
- Wen Ting Song
- School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, 454003, People's Republic of China,
| | | | | |
Collapse
|
7
|
Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ. Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 2013; 340:1327-9. [PMID: 23766325 DOI: 10.1126/science.1233692] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Root effect is a pH-dependent reduction in hemoglobin-O2 carrying capacity. Specific to ray-finned fishes, the Root effect has been ascribed specialized roles in retinal oxygenation and swimbladder inflation. We report that when rainbow trout are exposed to elevated water carbon dioxide (CO2), red muscle partial pressure of oxygen (PO2) increases by 65%--evidence that Root hemoglobins enhance general tissue O2 delivery during acidotic stress. Inhibiting carbonic anhydrase (CA) in the plasma abolished this effect. We argue that CA activity in muscle capillaries short-circuits red blood cell (RBC) pH regulation. This acidifies RBCs, unloads O2 from hemoglobin, and elevates tissue PO2, which could double O2 delivery with no change in perfusion. This previously undescribed mechanism to enhance O2 delivery during stress may represent the incipient function of Root hemoglobins in fishes.
Collapse
Affiliation(s)
- Jodie L Rummer
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
8
|
Naderi M, Zargham D, Asadi A, Bashti T, Kamayi K. Short-term responses of selected endocrine parameters in juvenile rainbow trout (Oncorhynchus mykiss) exposed to 4-nonylphenol. Toxicol Ind Health 2013; 31:1218-28. [DOI: 10.1177/0748233713491806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthetic organic compound 4-nonylphenol (4-NP) has been shown to have a wide range of adverse effects on the endocrine system of various animals including fish. The present study evaluated the potential effects of 4-NP on vitellogenin (VTG) synthesis, steroid, and thyroid hormone concentrations in both juvenile male and female rainbow trout ( Oncorhynchus mykiss). Fish were exposed by intraperitoneal injection to different doses of 4-NP (1, 10, 50, and 100 μg g−1) or vehicle (coconut oil) over a period of 14 days. Blood samples were collected 7 and 14 days after initiation of treatment. Plasma VTG levels in 4-NP-treated fish were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis as a high molecular weight protein band of 180 KDa. In addition, plasma VTG concentrations were quantified indirectly using plasma alkali-labile phosphate (ALP) and plasma calcium. Both ALP and calcium levels in plasma showed similar and parallel increase patterns after exposure to 4-NP that were significantly higher compared with controls. The analysis of plasma sex steroid levels revealed a significant increase in 17β-estradiol and testosterone in plasma of juvenile males and females, respectively. Furthermore, a significant increase was observed in plasma cortisol levels. On the other hand, 4-NP decreased both plasma triiodothyronine and thyroxine after 7 and 14 days of treatment. These results suggest that 4-NP can affect different parts of the endocrine system, which may lead to serious impairments in physiological homeostasis of juvenile rainbow trout.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Islamic Republic of Iran
| | - Davood Zargham
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Islamic Republic of Iran
| | - Asad Asadi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Islamic Republic of Iran
| | - Tayebeh Bashti
- Shahid Motahari Genetic Research Center for Coldwater Fishes, Iraninan Fisheries Research Organization, Yasuj, Islamic Republic of Iran
| | - Kianoosh Kamayi
- Department of Fisheries, Faculty of Natural Resources, Islamic Azad University, Bandar Abbas Branch, Bandar Abbas, Islamic Republic of Iran
| |
Collapse
|
9
|
Gilmour KM, Kirkpatrick S, Massarsky A, Pearce B, Saliba S, Stephany CÉ, Moon TW. The Influence of Social Status on Hepatic Glucose Metabolism in Rainbow Trout Oncorhynchus mykiss. Physiol Biochem Zool 2012; 85:309-20. [DOI: 10.1086/666497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Jeffrey JD, Esbaugh AJ, Vijayan MM, Gilmour KM. Modulation of hypothalamic-pituitary-interrenal axis function by social status in rainbow trout. Gen Comp Endocrinol 2012; 176:201-10. [PMID: 22326353 DOI: 10.1016/j.ygcen.2012.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/30/2011] [Accepted: 01/19/2012] [Indexed: 01/23/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) form stable dominance hierarchies when confined in pairs. These hierarchies are driven by aggressive competition over limited resources and result in one fish becoming dominant over the other. An important indicator of low social status is sustained elevation of circulating cortisol levels as a result of chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis. In the present study it was hypothesized that social status modulates the expression of key proteins involved in the functioning of the HPI axis. Cortisol treatment and fasting were used to assess whether these characteristics seen in subordinate fish also affected HPI axis function. Social status modulated plasma adrenocorticotropic hormone (ACTH) levels, cortisol synthesis, and liver glucocorticoid receptor (GR) expression. Plasma ACTH levels were lower by approximately 2-fold in subordinate and cortisol-treated fish, consistent with a negative feedback role for cortisol in modulating HPI axis function. Although cortisol-treated fish exhibited differences in corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP) mRNA relative abundances in the preoptic area and telencephalon, respectively, no effect of social status on CRF or CRF-BP was detected. Head kidney melanocortin 2 receptor (MC2R) mRNA relative levels were unaffected by social status, while mRNA relative abundances of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme were elevated in dominant fish. Liver GR2 mRNA and total GR protein levels in subordinate fish were lower than control values by approximately 2-fold. In conclusion, social status modulated the functioning of the HPI axis in rainbow trout. Our results suggest altered cortisol dynamics and reduced target tissue response to this steroid in subordinate fish, while the higher transcript levels for steroid biosynthesis in dominant fish leads us to propose an adaptive role for responding to subsequent stressors.
Collapse
|
11
|
Thomas JB, Gilmour KM. Low social status impairs hypoxia tolerance in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2012; 182:651-62. [PMID: 22349625 DOI: 10.1007/s00360-012-0648-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/07/2011] [Accepted: 01/26/2012] [Indexed: 11/25/2022]
Abstract
In the present study, chronic behavioural stress resulting from low social status affected the physiological responses of rainbow trout (Oncorhynchus mykiss) to a subsequent acute stressor, exposure to hypoxia. Rainbow trout were confined in fork-length matched pairs for 48-72 h, and social rank was assigned based on behaviour. Dominant and subordinate fish were then exposed individually to graded hypoxia (final water PO(2), PwO(2) = 40 Torr). Catecholamine mobilization profiles differed between dominant and subordinate fish. Whereas dominant fish exhibited generally low circulating catecholamine levels until a distinct threshold for release was reached (PwO(2) = 51.5 Torr corresponding to arterial PO(2), PaO(2) = 24.1 Torr), plasma catecholamine concentrations in subordinate fish were more variable and identification of a distinct threshold for release was problematic. Among fish that mobilized catecholamines (i.e. circulating catecholamines rose above the 95% confidence interval around the baseline value), however, the circulating levels achieved in subordinate fish were significantly higher (459.9 ± 142.2 nmol L(-1), mean ± SEM, N = 12) than those in dominant fish (130.9 ± 37.9 nmol L(-1), N = 12). The differences in catecholamine mobilization occurred despite similar P(50) values in dominant (22.0 ± 1.5 Torr, N = 6) and subordinate (22.1 ± 2.2 Torr, N = 8) fish, and higher PaO(2) values in subordinate fish under severely hypoxic conditions (i.e. PwO(2) < 60 Torr). The higher PaO(2) values of subordinate fish likely reflected the greater ventilatory rates and amplitudes exhibited by these fish during severe hypoxia. At the most severe level of hypoxia, subordinate fish were unable to defend arterial blood O(2) content, which fell to approximately half (0.60 ± 0.13 mL O(2) g(-1) haemoglobin, N = 9) that of dominant fish (1.08 ± 0.09 mL O(2) g(-1) haemoglobin, N = 9). Collectively, these data indicate that chronic social stress impacts the ability of trout to respond to the additional, acute stress of hypoxia.
Collapse
Affiliation(s)
- J B Thomas
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | | |
Collapse
|
12
|
LeBlanc S, Middleton S, Gilmour KM, Currie S. Chronic social stress impairs thermal tolerance in the rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 2011; 214:1721-31. [PMID: 21525319 DOI: 10.1242/jeb.056135] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When faced with limited resources, juvenile salmonid fish form dominance hierarchies that result in social stress for socially subordinate individuals. Social stress, in turn, can have consequences for the ability of the fish to respond to additional stressors such as pathogens or exposure to pollutants. In the present study, the possibility that social stress affects the ability of rainbow trout (Oncorhynchus mykiss) to tolerate acute increases in water temperature was investigated. To this end, we first evaluated physiological and cellular stress responses following a 1 h heat shock in juvenile fish in dominance hierarchies. We measured stress hormone (cortisol and catecholamines) concentrations and blood, brain and liver tissue levels of three heat shock proteins (HSPs), the stress inducible HSP70, the constitutive HSC70 and HSP90, in dominant and subordinate trout. No effects of social status on the hormonal response to the heat stress were detected, but the cellular heat shock response in the brain and liver of dominant and subordinate individuals was inhibited. We then assessed thermal tolerance in dominant and subordinate fish through critical thermal maximum temperature (CT(max)) trials and measured HSPs following the heat shock. Subordinate fish were less thermally tolerant than their dominant counterparts. We conclude that social stress impacts the ability of fish to respond, on a cellular scale and in a tissue-specific manner, to increases in water temperature, with likely consequences for overall fitness.
Collapse
Affiliation(s)
- Sacha LeBlanc
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | | | | | | |
Collapse
|
13
|
Lu G, Yan Z, Wang Y, Chen W. Assessment of estrogenic contamination and biological effects in Lake Taihu. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:974-981. [PMID: 21451949 DOI: 10.1007/s10646-011-0660-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Lake Taihu is the third largest freshwater lake in China and is contaminated with xenoestrogens associated with high population density, intensive livestock and aquatic breeding activities. A field study in Lake Taihu was conducted using the goldfish (Carassius auratus) as an indicator organism. Several biological markers were selected to assess the extent of estrogenic contamination. Changes in serum vitellogenin (VTG), and gill 7-Ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST) and reduced glutathione (GSH) were measured in caged juvenile goldfish for 28 days in seven locations in northern Lake Taihu. Bioassay showed VTG increased 0.64-2.42 folds over time in goldfish collected from five stations and GSH decreased in samples from all seven stations after 7 days of exposure. EROD levels increased continually in fish collected at all the seven stations and the highest concentrations occurred at day 21. GST activity increased significantly at 7 days. The concentration of the target estrogens estrone (E(1)), 17β-estradiol (E(2)), ethinylestradiol (EE(2)), octylphenol (OP), diethylstilbestrol (DES), nonylphenol (NP) and bisphenol A (BPA) were determined in lake water at the sampling stations. Each individual estrogen concentration measured was multiplied by its relative potency to gain the estradiol equivalent (EEQ). There was an obvious correlation between the concentration of VTG and the total EEQ for all seven locations (P < 0.001). The biomarker VTG, EROD, GST and GSH assays and chemical analysis might be used to illustrate the potential risk in Lake Taihu.
Collapse
Affiliation(s)
- Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Molecular correlates of social dominance: a novel role for ependymin in aggression. PLoS One 2011; 6:e18181. [PMID: 21483679 PMCID: PMC3071721 DOI: 10.1371/journal.pone.0018181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/22/2011] [Indexed: 01/16/2023] Open
Abstract
Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical study.
Collapse
|
15
|
Filby AL, Paull GC, Bartlett EJ, Van Look KJW, Tyler CR. Physiological and health consequences of social status in zebrafish (Danio rerio). Physiol Behav 2010; 101:576-87. [PMID: 20851709 DOI: 10.1016/j.physbeh.2010.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
Abstract
Social status affects access to food, mates and shelter and has consequences for the physiology of individuals and their health status. In the zebrafish (Danio rerio), an emerging model for studies into animal behavior, the possible consequences of social hierarchy to an individual's physiology and health are unknown. To address this, in this species we assessed the effects of social interaction (for periods of 1-5days) on growth, stress, immune function and reproductive condition. Wide-ranging differences in physiology occurred between the social ranks, some of which were sex-related and time-dependent. In both sexes, dominant fish were larger than subordinates and dominant males had a higher growth rate during the trials. Subordinates had higher plasma cortisol and in males higher telencephalic corticotrophin-releasing hormone, neuropeptide y and glucocorticoid receptor gene expression. Splenic cytokine expression suggested differences in immune status between ranks in both sexes and hematocrit was elevated in subordinate males. In both sexes, dominants and subordinates differed in the expression of genes for various gonadal sex steroid receptors and steroidogenic enzymes and in dominant females the ovary was larger relative to body mass compared with in subordinates. Dominant males had higher plasma 11-ketotestosterone than subordinates and there was an increase in the number of spermatids in their testes over the duration of the study that was not seen in subordinate males. The wide-ranging physiological differences seen between dominant and subordinate zebrafish as a consequence of their social status suggest negative health impacts for subordinates after prolonged durations in those hierarchies.
Collapse
Affiliation(s)
- Amy L Filby
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Rummer JL, Roshan-Moniri M, Balfry SK, Brauner CJ. Use it or lose it? Sablefish, Anoplopoma fimbria, a species representing a fifth teleostean group where the βNHE associated with the red blood cell adrenergic stress response has been secondarily lost. J Exp Biol 2010; 213:1503-12. [DOI: 10.1242/jeb.038844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Like most teleosts, sablefish (Anoplopoma fimbria Pallas 1814) blood exhibits a moderate Root effect (~35% maximal desaturation), where a reduction in blood pH dramatically reduces O2 carrying capacity, a mechanism important for oxygenating the eye and filling the swim bladder (SB) in teleosts. Although sablefish lack a SB, we observed a well-defined choroid rete at the eye. The adrenergically mediated cell swelling typically associated with a functional red blood cell (RBC) β-adrenergic Na+/H+ exchanger (βNHE), which would normally protect RBC pH, and thus O2 transport, during a generalized acidosis, was not observed in sablefish blood. Neither isoproterenol (a β-agonist) nor 8-bromo cAMP could elicit this response. Furthermore, RBC osmotic shrinkage, known to stimulate NHEs in general and βNHE in other teleosts such as trout and flounder, resulted in no significant regulatory volume increase (RVI), further supporting the absence of a functional RBC βNHE. The onset of the Root effect occurs at a much lower RBC pH (6.83–6.92) than in other teleosts, and thus RBC βNHE may not be required to protect O2 transport during a generalized acidosis in vivo. Phylogenetically, sablefish may represent a fifth group of teleosts exhibiting a secondary reduction or loss of βNHE activity. However, sablefish have not lost the choroid rete at the eye (unlike in the other four groups), which may still function with the Root effect to oxygenate the retina, but the low pH onset of the Root effect may ensure haemoglobin (Hb)-O2 binding is not compromised at the respiratory surface during a general acidosis in the absence of RBC βNHE. The sablefish may represent an anomaly within the framework of Root effect evolution, in that they possess a moderate Root effect and a choroid rete at the eye, but lack the RBC βNHE and the SB system.
Collapse
Affiliation(s)
- Jodie L. Rummer
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Mani Roshan-Moniri
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Shannon K. Balfry
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, No. 2370–6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
17
|
Currie S, LeBlanc S, Watters MA, Gilmour KM. Agonistic encounters and cellular angst: social interactions induce heat shock proteins in juvenile salmonid fish. Proc Biol Sci 2009; 277:905-13. [PMID: 19923129 DOI: 10.1098/rspb.2009.1562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Juvenile salmonid fish readily form dominance hierarchies when faced with limited resources. While these social interactions may result in profound behavioural and physiological stress, it is unknown if this social stress is evident at the level of the cellular stress response--specifically, the induction of stress or heat shock proteins (Hsps). Thus, the goal of our study was to determine if Hsps are induced during hierarchy formation in juvenile rainbow trout (Oncorhynchus mykiss). To this end, we measured levels of three Hsps, Hsp70, Hsc (heat shock cognate)70 and Hsp90 in the white muscle, liver and brain of trout that had been interacting for 36 h, 72 h or 6 days. Our data indicate that Hsps are induced in both dominant and subordinate fish in a time- and tissue-specific manner. In further mechanistic experiments on fasted and cortisol-treated fish, we demonstrated that high plasma cortisol does not affect Hsp induction in trout white muscle or liver, but both conditions may be part of the mechanism for Hsp induction with social stress in the brain. We conclude that the behavioural and physiological stress experienced by juvenile rainbow trout in dominance hierarchies can be extended to the induction of Hsps.
Collapse
Affiliation(s)
- Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada.
| | | | | | | |
Collapse
|
18
|
St-Cyr S, Aubin-Horth N. Integrative and genomics approaches to uncover the mechanistic bases of fish behavior and its diversity. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:9-21. [PMID: 18824118 DOI: 10.1016/j.cbpa.2008.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/07/2023]
Abstract
Understanding the molecular mechanisms underlying fish behavior is of fundamental importance to further our understanding of the proximate and ultimate causes of variation in this trait and informs us on issues of animal husbandry, conservation, and welfare. One way to approach this question is to study variation in gene expression in individuals exhibiting different behaviors and relating it to variations at other phenotypic levels in an organismic, ecological and evolutionary context. Here we review studies that have shown that the use of such an integrative and genomics approach is greatly useful for shedding new light on the mechanisms of behaviors as diverse as social dominance, mate choice, reproduction and migration. We present studies that use functional genomics tools and integrate several biological levels of organization, including transcription variation, which are important in the context of integrative biology and genomics of fish behavior. We review studies of phenotype-level variation in transcription but also studies that focus on variation at the individual-level. Dissecting the molecular bases of among-individual variation in behavior, including the study of variation in temperament (behavioral syndrome/coping style) within and among populations, will gain importance in the field in the years to come.
Collapse
Affiliation(s)
- Sophie St-Cyr
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|