1
|
Heikkila JJ. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:179-192. [PMID: 27649598 DOI: 10.1016/j.cbpa.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, ON, Canada.
| |
Collapse
|
2
|
Simoncelli F, Belia S, Di Rosa I, Paracucchi R, Rossi R, La Porta G, Lucentini L, Fagotti A. Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:221-229. [PMID: 26277541 DOI: 10.1016/j.ecoenv.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
There have been a few studies on the negative effects of pollutants on amphibian skin, the first structural barrier that interacts with the environment and its potential contaminants. In this study an ex vivo skin organ culture from the amphibian Pelophylax bergeri was used to evaluate cell stress responses induced by short-term exposure to cadmium (Cd), a toxic heavy metal known to be an environmental hazard to both humans and wildlife. Histopathological studies were carried out on skin explants using light microscopy and changes in the expression of stress proteins, such as Metallothionein (MT) and Heat shock proteins (HSPs), were investigated by Real-time RT-PCR. Results revealed that amphibian skin reacts to Cd-induced stress by activating biological responses such as morphological alterations and dose- and time-dependent induction of Mt and Hsp70 mRNA expression, suggesting their potential role as biomarkers of exposure to Cd. This work provides a basis for a better understanding of the tissue-specific responses of amphibian skin as a target organ to Cd exposure and its in vitro use for testing potentially harmful substances present in the environment.
Collapse
Affiliation(s)
- Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Romina Paracucchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Roberta Rossi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Gianandrea La Porta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
3
|
Khamis I, Heikkila JJ. Enhanced HSP30 and HSP70 accumulation in Xenopus cells subjected to concurrent sodium arsenite and cadmium chloride stress. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:165-72. [PMID: 23919948 DOI: 10.1016/j.cbpc.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/31/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that aid in protein folding, translocation and in preventing stress-induced protein aggregation. The present study examined the effect of simultaneous sodium arsenite and cadmium chloride treatment on the pattern of HSP30 and HSP70 accumulation in A6 kidney epithelial cells of the frog, Xenopus laevis. Immunoblot analysis revealed that HSP30 and HSP70 accumulation in concurrent stressor treatments were significantly higher than the sum of HSP30 or HSP70 accumulation in individual treatments. This finding suggested a synergistic action between sodium arsenite and cadmium chloride. KNK437 inhibitor studies indicated that the combined stressor-induced accumulation of HSPs may be regulated, at least in part, at the level of transcription. Immunocytochemistry revealed that simultaneous treatment of cells with the two stressors induced HSP30 accumulation primarily in the cytoplasm in a punctate pattern with some dysregulation of F-actin structure. Increased ubiquitinated protein accumulation was observed with combined sodium arsenite and cadmium chloride treatment compared to individual stressors suggesting an impairment of the ubiquitin proteasome degradation system. The addition of a mild heat shock further enhanced the accumulation of HSP30 and HSP70 in response to relatively low concentrations of sodium arsenite plus cadmium chloride.
Collapse
Affiliation(s)
- Imran Khamis
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
4
|
Brunt JJ, Khan S, Heikkila JJ. Sodium arsenite and cadmium chloride induction of proteasomal inhibition and HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:307-17. [PMID: 21983225 DOI: 10.1016/j.cbpc.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/21/2011] [Accepted: 09/25/2011] [Indexed: 01/03/2023]
Abstract
Sodium arsenite (NA) and cadmium chloride (CdCl(2)) are relatively abundant environmental toxicants that have multiple toxic effects including carcinogenesis, dysfunction of gene regulation and DNA and protein damage. In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with concentrations of NA (20-30 μM) or CdCl(2) (100-200 μM) that induced HSP30 and HSP70 accumulation also produced an increase in the relative levels of ubiquitinated protein. Actin protein levels were unchanged in these experiments. In time course experiments, the levels of ubiquitinated protein and HSPs increased over a 24h exposure to NA or CdCl(2). Furthermore, treatment of cells with NA or CdCl(2) reduced the relative levels of proteasome chymotrypsin (CT)-like activity compared to control. Interestingly, pretreatment of cells with the HSP accumulation inhibitor, KNK437, prior to NA or CdCl(2) exposure decreased the relative levels of ubiquitinated protein as well as HSP30 and HSP70. A similar finding was made with ubiquitinated protein induced by proteasomal inhibitors, MG132 and celastrol, known to induce HSP accumulation in A6 cells. However, the NA- or CdCl(2)-induced decrease in proteasome CT-like activity was not altered by KNK437 pretreatment. This study has shown for the first time in poikilothermic vertebrates that NA and CdCl(2) can inhibit proteasomal activity and that there is a possible association between HSP accumulation and the mechanism of protein ubiquitination.
Collapse
Affiliation(s)
- Jara J Brunt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | |
Collapse
|
5
|
Rupik W, Jasik K, Bembenek J, Widłak W. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:349-66. [DOI: 10.1016/j.cbpa.2011.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
|
6
|
Ridley W, Nishitai G, Matsuoka M. HSP110 expression is induced by cadmium exposure but is dispensable for cell survival of mouse NIH3T3 fibroblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:260-265. [PMID: 21787611 DOI: 10.1016/j.etap.2010.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/28/2009] [Accepted: 02/05/2010] [Indexed: 05/31/2023]
Abstract
The effects of cadmium exposure on the expression of HSP110 were examined in mouse NIH3T3 fibroblasts. Following exposure to cadmium chloride, the level of HSP110 and HSP70 proteins increased after 3h and remained elevated at 24h. Similarly, their mRNA levels increased markedly in response to cadmium exposure. Treatment with 10μM mercury chloride, another toxic metal compound, also induced expression of HSP110; however, HSP110 expression was not induced in cells exposed to the same concentration of manganese chloride, zinc chloride, or lead chloride for 6 or 24h. Silencing of HSP110 expression using short-interference RNA did not affect cadmium-induced cellular damage. These results show that cadmium exposure induces the expression of high molecular weight chaperone HSP110 as well as the well-known HSP70, but indicate that HSP110 does not play a major role in cell survival following cadmium exposure.
Collapse
Affiliation(s)
- Wakako Ridley
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | |
Collapse
|
7
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
8
|
Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:417-24. [DOI: 10.1016/j.cbpa.2009.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 01/09/2023]
|
9
|
Examination of cadmium-induced expression of the small heat shock protein gene, hsp30, in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:91-9. [DOI: 10.1016/j.cbpa.2008.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/19/2022]
|
10
|
Liu W, Yang YS, Francis D, Rogers HJ, Li P, Zhang Q. Cadmium stress alters gene expression of DNA mismatch repair related genes in Arabidopsis seedlings. CHEMOSPHERE 2008; 73:1138-1144. [PMID: 18722640 DOI: 10.1016/j.chemosphere.2008.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/21/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) is a non essential element, and is a widespread environmental pollutant. Exposure to Cd can result in a variety of adverse health effects in plant and humans. In the current study, Arabidopsis seedlings were used as a bio-indicator of Cd pollution. Seedlings were grown on MS media containing 0-6.0 mg L(-1) Cd for 18 days, and the gene expression patterns were used to link increased Cd exposure with progressive biological effects. Reduction of total soluble protein content in shoots of the Arabidopsis seedlings occurred with increase in Cd concentrations. For the gene expression patterns, seven genes known to be involved in cell division and DNA mismatch repair (MMR) system were investigated by semi-quantitative RT-PCR, and normalized using 18S rRNA gene expression. Expression of the proliferating cell nuclear antigen 2 (atPCNA 2), MutS 3 homolog (atMSH 3) and MutL1 homolog (atMLH1) genes in shoots of Arabidopsis was strongly induced by exposure to 0.75 mg L(-1) Cd, but were repressed by other Cd concentrations whereas exposure to 0.75-6 mg L(-1) of Cd resulted in a decreased expression of atPCNA1, atMSH 2, 6 and 7 genes independently of any observable biological effects, including survival, fresh weight and chlorophyll level of shoots. This work demonstrated that specific gene expression changes could serve as useful molecular biomarkers indicative of Cd exposure and related biological effects.
Collapse
Affiliation(s)
- W Liu
- Cardiff University, School of Earth Sciences, Cardiff CF10 3YE, UK
| | | | | | | | | | | |
Collapse
|
11
|
Intracellular localization of the heat shock protein, HSP110, in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:133-8. [DOI: 10.1016/j.cbpa.2008.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022]
|
12
|
Voyer J, Heikkila JJ. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:253-61. [PMID: 18675372 DOI: 10.1016/j.cbpa.2008.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 11/24/2022]
Abstract
In this study, we compared the effect of KNK437 (N-formyl-3, 4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat shock and chemical stressor-induced hsp30 gene expression in Xenopus laevis A6 kidney epithelial cells. Previously, KNK437 was shown to inhibit HSE-HSF1 binding activity and heat-induced hsp gene expression. In the present study, Northern and Western blot analysis revealed that pretreatment of A6 cells with KNK437 inhibited hsp30 mRNA and HSP30 and HSP70 protein accumulation induced by chemical stressors including sodium arsenite, cadmium chloride and herbimycin A. In A6 cells subjected to sodium arsenite, cadmium chloride, herbimycin A or a 33 degrees C heat shock treatment, immunocytochemistry and confocal microscopy revealed that HSP30 accumulated primarily in the cytoplasm. However, incubation of A6 cells at 35 degrees C resulted in enhanced HSP30 accumulation in the nucleus. Pre-treatment with 100 microM KNK437 completely inhibited HSP30 accumulation in A6 cells heat shocked at 33 or 35 degrees C as well as cells treated with 10 microM sodium arsenite, 100 microM cadmium chloride or 1 microg/mL herbimycin A. These results show that KNK437 is effective at inhibiting both heat shock- and chemical stress-induced hsp gene expression in amphibian cells.
Collapse
Affiliation(s)
- Janine Voyer
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|