1
|
Korf EA, Novozhilov AV, Mindukshev IV, Glotov AS, Kudryavtsev IV, Baidyuk EV, Dobrylko IA, Voitenko NG, Voronina PA, Habeeb S, Ghanem A, Osinovskaya NS, Serebryakova MK, Krivorotov DV, Jenkins RO, Goncharov NV. Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. Int J Mol Sci 2024; 25:10438. [PMID: 39408765 PMCID: PMC11477139 DOI: 10.3390/ijms251910438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The study of drugs of natural origin that increase endurance and/or accelerate recovery is an integral part of sports medicine and physiology. In this paper, decaffeinated green tea extract (GTE) and two ammonium salts-chloride (ACL) and carbonate (ACR)-were tested individually and in combination with GTE as stimulants of physical performance in a forced swimming rat experimental model. The determined parameters can be divided into seven blocks: functional (swimming duration); biochemistry of blood plasma; biochemistry of erythrocytes; hematology; immunology; gene expression of slow- and fast-twitch muscles (m. soleus, SOL, and m. extensor digitorum longus, EDL, respectively); and morphometric indicators of slow- and fast-twitch muscles. Regarding the negative control (intact animals), the maximum number of changes in all blocks of indicators was recorded in the GTE + ACR group, whose animals showed the maximum functional result and minimum lactate values on the last day of the experiment. Next, in terms of the number of changes, were the groups ACR, ACL, GTE + ACL, GTE and NaCl (positive control). In general, the number of identified adaptive changes was proportional to the functional state of the animals of the corresponding groups, in terms of the duration of the swimming load in the last four days of the experiment. However, not only the total number but also the qualitative composition of the identified changes is of interest. The results of a comparative analysis suggest that, in the model of forced swimming we developed, GTE promotes restoration of the body and moderate mobilization of the immune system, while small doses of ammonium salts, especially ammonium carbonate, contribute to an increase in physical performance, which is associated with satisfactory restoration of skeletal muscles and the entire body. The combined use of GTE with ammonium salts does not give a clearly positive effect.
Collapse
Affiliation(s)
- Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Artem V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Andrey S. Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Ekaterina V. Baidyuk
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Irina A. Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Samarmar Habeeb
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Afrah Ghanem
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia S. Osinovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Denis V. Krivorotov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, p.o. Kuz’molovsky bld.93, St. Petersburg 188663, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| |
Collapse
|
2
|
Liu R, Li L, Chen S, Yang Z, Kochovski Z, Mei S, Lu Y, Zhang L, Chen G. Evolution of Protein Assemblies Driven by the Switching of Interplay Mode. ACS NANO 2023; 17:2245-2256. [PMID: 36648413 DOI: 10.1021/acsnano.2c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A protein assembly with the ability to switch interplay modes of multiple driving forces has been achieved. Although biomolecular systems driven by multiple driving forces have been exploited, work on such a protein assembly capable of switching the interplay modes at nanoscale has been rarely reported so far as a result of their great fabrication challenge. In this work, two sets of driving forces such as ligand-ligand interaction and protein-protein interaction were leveraged to antagonistically underpin the multilayered stackings and trigger the hollow evolution to afford the well-defined hollow rectangular frame of proteins. While these protein frames further collapsed into aggregates, the ligand-ligand interactions were weakened, and the interplay of two sets of driving forces thereby tended to switch into synergistic mode, converting the protein packing mode from porously loose packing to axially dense packing and thus giving rise to a morphological evolution toward a nanosized protein tube. This strategy not only provides a nanoscale understanding on the mechanism underlying the switch of interplay modes in the context of biomacromolecules but also may provide access for diverse sophisticated biomacromolecular nanostructures that are historically inaccessible for conventional self-assembly strategies.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Weber RE, Jarvis JUM, Fago A, Bennett NC. O 2 binding and CO 2 sensitivity in haemoglobins of subterranean African mole rats. ACTA ACUST UNITED AC 2017; 220:3939-3948. [PMID: 28851819 DOI: 10.1242/jeb.160457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O2, we measured haematological characteristics, as well as Hb-O2 binding affinity and sensitivity to pH (Bohr effect), CO2, temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO2 on Hb-O2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | | | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Nigel C Bennett
- Zoology and Entomology Department, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
4
|
Weber RE, Fago A, Malte H, Storz JF, Gorr TA. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin. Am J Physiol Regul Integr Comp Physiol 2013; 305:R300-12. [PMID: 23720132 PMCID: PMC3743003 DOI: 10.1152/ajpregu.00014.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/22/2013] [Indexed: 11/22/2022]
Abstract
In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3(-)), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3(-) levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3(-) binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
5
|
Manna I, Khanna GL, Chandra Dhara P. Effect of training on physiological and biochemical variables of soccer players of different age groups. Asian J Sports Med 2012; 1:5-22. [PMID: 22375187 PMCID: PMC3289165 DOI: 10.5812/asjsm.34875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/11/2009] [Accepted: 12/29/2009] [Indexed: 11/16/2022] Open
Abstract
Purpose To find out the effect of training on selected physiological and biochemical variables of Indian soccer players of different age groups. Methods A total of 120 soccer players volunteered for the study, were divided (n = 30) into 4 groups: (i) under 16 years (U16), (ii) under 19 years (U19), (iii) under 23 years (U23), (iv) senior (SR). The training sessions were divided into 2 phases (a) Preparatory Phase (PP, 8 weeks) and (b) Competitive Phase (CP, 4 weeks). The training program consisted of aerobic, anaerobic and skill development, and were completed 4 hrs/day; 5 days/week. Selected physiological and biochemical variables were measured at zero level (baseline data, BD) and at the end of PP and CP. Results A significant increase (P < 0.05) in lean body mass (LBM), VO2max, anaerobic power, grip and back strength, urea, uric acid and high density lipoprotein cholesterol (HDL-C); and a significant decrease (P < 0.05) in body fat, hemoglobin (Hb), total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) were detected in some groups in PP and CP phases of the training when compare to BD. However, no significant change was found in body mass and maximal heart rate of the players after the training program. Conclusion This study would provide useful information for training and selection of soccer players of different age groups.
Collapse
Affiliation(s)
- Indranil Manna
- Human Performance Lab, Sports Authority of India, J. N. Stadium, New Delhi, India
- Corresponding Author: Address: Department of Physiology, Janaki Medical College, Janakpur, Nepal. E-mail:
| | - Gulshan Lal Khanna
- Department of Health Sciences, Manav Rachana International University, Faridabad, India
| | | |
Collapse
|
6
|
|
7
|
Effect of Training on Morphological, Physiological and Biochemical Variables of U-19 Soccer Players. BALTIC JOURNAL OF HEALTH AND PHYSICAL ACTIVITY 2011. [DOI: 10.2478/v10131-011-0023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Yan X, Jiang N, Ma J. Theoretical study of interactions between human adult hemoglobin and acetate ion by polarizable force field and fragmentation quantum chemistry methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0273-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Friedman M, Levin CE. Review of methods for the reduction of dietary content and toxicity of acrylamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6113-6140. [PMID: 18624452 DOI: 10.1021/jf0730486] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Potentially toxic acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose in cereals, potatoes, and other plant-derived foods. This overview surveys and consolidates the following dietary aspects of acrylamide: distribution in food originating from different sources; consumption by diverse populations; reduction of the acrylamide content in the diet; and suppression of adverse effects in vivo. Methods to reduce adverse effects of dietary acrylamide include (a) selecting potato, cereal, and other plant varieties for dietary use that contain low levels of the acrylamide precursors, namely, asparagine and glucose; (b) removing precursors before processing; (c) using the enzyme asparaginase to hydrolyze asparagine to aspartic acid; (d) selecting processing conditions (pH, temperature, time, processing and storage atmosphere) that minimize acrylamide formation; (e) adding food ingredients (acidulants, amino acids, antioxidants, nonreducing carbohydrates, chitosan, garlic compounds, protein hydrolysates, proteins, metal salts) that have been reported to prevent acrylamide formation; (f) removing/trapping acrylamide after it is formed with the aid of chromatography, evaporation, polymerization, or reaction with other food ingredients; and (g) reducing in vivo toxicity. Research needs are suggested that may further facilitate reducing the acrylamide burden of the diet. Researchers are challenged to (a) apply the available methods and to minimize the acrylamide content of the diet without adversely affecting the nutritional quality, safety, and sensory attributes, including color and flavor, while maintaining consumer acceptance; and (b) educate commercial and home food processors and the public about available approaches to mitigating undesirable effects of dietary acrylamide.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | |
Collapse
|