1
|
Folkerts EJ, Grosell M. Gulf toadfish ( Opsanus beta) urinary bladder ion and water transport is enhanced by acclimation to higher salinity to serve water balance. Am J Physiol Regul Integr Comp Physiol 2025; 328:R59-R74. [PMID: 39437544 DOI: 10.1152/ajpregu.00077.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Marine teleosts experience ion gain and water loss in their natural habitats. Among other tissues, the urinary bladder epithelium of marine fishes has been shown to actively transport ions to facilitate water absorption. However, transport properties of the urinary bladder epithelium of marine fishes and its plasticity in altered ambient salinities is relatively under-investigated. We describe urinary bladder epithelium electrophysiology, water flux, and expressions of ion transporters in urinary bladder tissue of Gulf toadfish (Opsanus beta) acclimated to either 35 ppt or 60 ppt seawater. Water absorption in bladder sac preparations increased ∼350% upon acclimation to 60 ppt. Increases in water transport coincided with a significant ∼137% increase in urinary bladder tissue mucosal-to-serosal short circuit current (Isc) and a ∼56% decrease in tissue membrane resistance. Collectively, these metrics indicate that an active electrogenic system facilitates water absorption via Na+ (and Cl-) transport in urinary bladder tissue. Furthermore, pharmacological inhibition of urinary bladder tissue Isc and expression of a suite of ion transporters and channels previously unidentified in this tissue provide mechanistic insights into the transport processes responsible for water flux. Analysis of water transport to overall Gulf toadfish water balance reveals a modest water conservation role for the urinary bladder of ∼0.5% of total water absorption in 35 ppt and 1.9% in 60 ppt acclimated toadfish. These results emphasize that electrogenic ion transport facilitates water-absorptive properties of the urinary bladder in Gulf toadfish-a process that is regulated to facilitate water homeostasis.NEW & NOTEWORTHY Novel experiments showcasing increased urinary bladder water absorption, ion transport, and altered channel/transporter expression in a marine fish acclimated to high salinities. Our results provide additional and noteworthy mechanistic insight into the ionoregulatory processes controlling water transport at the level of the urinary bladder in marine teleosts. Experimental outcomes are applied to whole organism-level water transport values, and the relative importance of marine teleost urinary bladder function to overall organism water conservatory measures is discussed.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States
| |
Collapse
|
2
|
Olver DJ, Azam I, Benson JD. HepG2 cells undergo regulatory volume decrease by mechanically induced efflux of water and solutes. Biomech Model Mechanobiol 2024; 23:1781-1799. [PMID: 39012455 DOI: 10.1007/s10237-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
This study challenges the conventional belief that animal cell membranes lack a significant hydrostatic gradient, particularly under anisotonic conditions, as demonstrated in the human hepatoma cell line HepG2. The Boyle van't Hoff (BvH) relation describes volumetric equilibration to anisotonic conditions for many cells. However, the BvH relation is simple and does not include many cellular components such as the cytoskeleton and actin cortex, mechanosensitive channels, and ion pumps. Here we present alternative models that account for mechanical resistance to volumetric expansion, solute leakage, and active ion pumping. We found the BvH relation works well to describe hypertonic volume equilibration but not hypotonic volume equilibration. After anisotonic exposure and return isotonic conditions cell volumes were smaller than their initial isotonic volume, indicating solutes had leaked out of the cell during swelling. Finally, we observed HepG2 cells undergo regulatory volume decrease at both 20 °C and 4 °C, indicating regulatory volume decrease to be a relatively passive phenomenon and not driven by ion pumps. We determined the turgor-leak model, which accounts for mechanical resistance and solute leakage, best fits the observations found in the suite of experiments performed, while other models were rejected.
Collapse
Affiliation(s)
- Dominic J Olver
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Iqra Azam
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
3
|
Kovac A, Goss GG. Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes. J Comp Physiol B 2024; 194:645-662. [PMID: 38761226 DOI: 10.1007/s00360-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
Collapse
Affiliation(s)
- Anthony Kovac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
4
|
Mao F, Yang W. How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells. PLoS Comput Biol 2023; 19:e1011720. [PMID: 38117763 PMCID: PMC10732429 DOI: 10.1371/journal.pcbi.1011720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
Merkel cells combine with Aβ afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aβ afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.
Collapse
Affiliation(s)
- Fangtao Mao
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wenzhen Yang
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Yang Y, Jiang H. Intercellular water exchanges trigger soliton-like waves in multicellular systems. Biophys J 2022; 121:1610-1618. [PMID: 35395246 PMCID: PMC9117941 DOI: 10.1016/j.bpj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oscillations and waves are ubiquitous in living cellular systems. Generations of these spatiotemporal patterns are generally attributed to some mechanochemical feedbacks. Here, we treat cells as open systems, i.e., water and ions can pass through the cell membrane passively or actively, and reveal a new origin of wave generation. We show that osmotic shocks above a shock threshold will trigger self-sustained cell oscillations and result in long-range waves propagating without decrement, a phenomenon that is analogous to the excitable medium. The traveling wave propagates along the intercellular osmotic pressure gradient, and its wave speed scales with the magnitude of intercellular water flows. Furthermore, we also find that the traveling wave exhibits several hallmarks of solitary waves. Together, our findings predict a new mechanism of wave generation in living multicellular systems. The ubiquity of intercellular water exchanges implies that this mechanism may be relevant to a broad class of systems.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Grosell M, Heuer RM, Wu NC, Cramp RL, Wang Y, Mager EM, Dwyer RG, Franklin CE. Salt-water acclimation of the estuarine crocodile Crocodylus porosus involves enhanced ion transport properties of the urodaeum and rectum. J Exp Biol 2020; 223:jeb210732. [PMID: 31953364 DOI: 10.1242/jeb.210732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 01/31/2023]
Abstract
Estuarine crocodiles, Crocodylus porosus, inhabit freshwater, estuarine and marine environments. Despite being known to undertake extensive movements throughout and between hypo-osmotic and hyperosmotic environments, little is known about the role of the cloaca in coping with changes in salinity. We report here that, in addition to the well-documented functional plasticity of the lingual salt glands, the middle of the three cloacal segments (i.e. the urodaeum) responds to increased ambient salinity to enhance solute-coupled water absorption. This post-renal modification of urine serves to conserve water when exposed to hyperosmotic environments and, in conjunction with lingual salt gland secretions, enables C. porosus to maintain salt and water balance and thereby thrive in hyperosmotic environments. Isolated epithelia from the urodaeum of 70% seawater-acclimated C. porosus had a strongly enhanced short-circuit current (an indicator of active ion transport) compared with freshwater-acclimated crocodiles. This enhanced active ion absorption was driven by increased Na+/K+-ATPase activity, and possibly enhanced proton pump activity, and was facilitated by the apical epithelial Na+ channel (ENaC) and/or the apical Na+/H+ exchanger (NHE2), both of which are expressed in the urodaeum. NHE3 was expressed at very low levels in the urodaeum and probably does not contribute to solute-coupled water absorption in this cloacal segment. As C. porosus does not appear to drink water of salinities above 18 ppt, observations of elevated short-circuit current in the rectum as well as a trend for increased NHE2 expression in the oesophagus, the anterior intestine and the rectum suggest that dietary salt intake may stimulate salt and possibly water absorption by the gastrointestinal tract of C. porosus living in hyperosmotic environments.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Rachael M Heuer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - N C Wu
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yadong Wang
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Edward M Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Ross G Dwyer
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Xie K, Yang Y, Jiang H. Controlling Cellular Volume via Mechanical and Physical Properties of Substrate. Biophys J 2019; 114:675-687. [PMID: 29414713 DOI: 10.1016/j.bpj.2017.11.3785] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023] Open
Abstract
The mechanical and physical properties of substrate play a crucial role in regulating many cell functions and behaviors. However, how these properties affect cell volume is still unclear. Here, we show that an increase in substrate stiffness, available spread area, or effective adhesion energy density results in a remarkable cell volume decrease (up to 50%), and the dynamic cell spreading process is also accompanied by dramatic cell volume decrease. Further, studies of ion channel inhibition and osmotic shock suggest that these volume decreases are due to the efflux of water and ions. We also show that disrupting cortex contractility leads to bigger cell volume. Collectively, these results reveal the "mechanism of adhesion-induced compression of cells," i.e., stronger interaction between cell and substrate leads to higher actomyosin contractility, expels water and ions, and thus decreases cell volume.
Collapse
Affiliation(s)
- Kenan Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Yang Y, Jiang H. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems. PHYSICAL REVIEW LETTERS 2017; 118:208102. [PMID: 28581769 DOI: 10.1103/physrevlett.118.208102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 06/07/2023]
Abstract
Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
9
|
Madsen SS, Engelund MB, Cutler CP. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes. THE BIOLOGICAL BULLETIN 2015; 229:70-92. [PMID: 26338871 DOI: 10.1086/bblv229n1p70] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Morten B Engelund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christopher P Cutler
- Department of Biology, Georgia Southern University, P.O. Box 8042, Statesboro, Georgia 30460
| |
Collapse
|
10
|
Alexander RT, Rievaj J, Dimke H. Paracellular calcium transport across renal and intestinal epithelia. Biochem Cell Biol 2014; 92:467-80. [PMID: 25386841 DOI: 10.1139/bcb-2014-0061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca(2+)) is a key constituent in a myriad of physiological processes from intracellular signalling to the mineralization of bone. As a consequence, Ca(2+) is maintained within narrow limits when circulating in plasma. This is accomplished via regulated interplay between intestinal absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted recent molecular insights into both the mechanism of secondarily active paracellular Ca(2+) movement and the identity of claudins that permit the passage of Ca(2+) through the tight junction of these epithelia.
Collapse
Affiliation(s)
- R Todd Alexander
- a Department of Pediatrics, The University of Alberta, 4-585 Edmonton Clinic Health Academy, 11405 - 87 Ave, Edmonton, AB T6G 2R7, Canada
| | | | | |
Collapse
|
11
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Jiang H, Sun S. Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 2013; 105:609-19. [PMID: 23931309 PMCID: PMC3736675 DOI: 10.1016/j.bpj.2013.06.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it predicts cellular volume and pressure for several models of cell cortical mechanics. Moreover, we show that when cells are subjected to an externally applied load, such as in an atomic force microscopy indentation experiment, active regulation of volume and pressure leads to a complex cellular response. Instead of the passive mechanics of the cortex, the observed cell stiffness depends on several factors working together. This provides a mathematical explanation of rate-dependent response of cells under force.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering and Johns Hopkins Physical Oncology Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B 2011; 182:1-39. [DOI: 10.1007/s00360-011-0601-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/08/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022]
|
14
|
Larsen EH. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake. Acta Physiol (Oxf) 2011; 202:435-64. [PMID: 21288306 DOI: 10.1111/j.1748-1716.2010.02239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In 1937, August Krogh discovered a powerful active Cl(-) uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority cell type denoted as the γ-type mitochondria-rich (MR) cell, which is highly specialized for epithelial Cl(-) uptake whether the frog is in the pond of low [NaCl] or the skin is isolated and studied by Ussing chamber technique. One type of apical Cl(-) channels of the γ-MR cell is activated by binding of Cl(-) to an external binding site and by membrane depolarization. This results in a tight coupling of the uptake of Na(+) by principal cells and Cl(-) by MR cells. Another type of Cl(-) channels (probably CFTR) is involved in isotonic fluid uptake. It is suggested that the Cl(-) channels serve passive uptake of Cl(-) from the thin epidermal film of fluid produced by mucosal glands. The hypothesis is evaluated by discussing the turnover of water and ions of the epidermal surface fluid under terrestrial conditions. The apical Cl(-) channels close when the electrodiffusion force is outwardly directed as it is when the animal is in the pond. With the passive fluxes eliminated, the Cl(-) flux is governed by active transport and evidence is discussed that this is brought about by an exchange of cellular HCO(3) (-) with Cl(-) of the outside bath driven by an apical H(+) V-ATPase.
Collapse
Affiliation(s)
- Erik Hviid Larsen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark.
| |
Collapse
|
15
|
Haugan BM, Halberg KA, Jespersen A, Prehn LR, Møbjerg N. Functional characterization of the vertebrate primary ureter: structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia). BMC DEVELOPMENTAL BIOLOGY 2010; 10:56. [PMID: 20507566 PMCID: PMC2891660 DOI: 10.1186/1471-213x-10-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/27/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model. RESULTS We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na+ and K+ conductances, as well as a large K+ conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na+/K+-ATPase in the basolateral labyrinth. CONCLUSIONS We propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na+/K+ pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations.
Collapse
Affiliation(s)
- Birgitte M Haugan
- Department of Biology, University of Copenhagen, Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Grosell M, Genz J, Taylor JR, Perry SF, Gilmour KM. The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout. ACTA ACUST UNITED AC 2009; 212:1940-8. [PMID: 19483012 DOI: 10.1242/jeb.026856] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyloric caeca and anterior intestine epithelia from seawater-acclimated rainbow trout exhibit different electrophysiological parameters with lower transepithelial potential and higher epithelial conductance in the pyloric caeca than the anterior intestine. Both pyloric caeca and the anterior intestine secrete HCO(3)(-) at high rates in the absence of serosal HCO(3)(-)/CO(2), demonstrating that endogenous CO(2) is the principal source of HCO(3)(-) under resting control conditions. Apical, bafilomycin-sensitive, H(+) extrusion occurs in the anterior intestine and probably acts to control luminal osmotic pressure while enhancing apical anion exchange; both processes with implications for water absorption. Cytosolic carbonic anhydrase (CAc) activity facilitates CO(2) hydration to fuel apical anion exchange while membrane-associated, luminal CA activity probably facilitates the conversion of HCO(3)(-) to CO(2). The significance of membrane-bound, luminal CA may be in part to reduce HCO(3)(-) gradients across the apical membrane to further enhance anion exchange and thus Cl(-) absorption and to facilitate the substantial CaCO(3) precipitation occurring in the lumen of marine teleosts. In this way, membrane-bound, luminal CA thus promotes the absorption of osmolytes and reduction on luminal osmotic pressure, both of which will serve to enhance osmotic gradients to promote intestinal water absorption.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, Division of Marine Biology and Fisheries, University of Miami, Miami, FL 33149, USA.
| | | | | | | | | |
Collapse
|
17
|
Suzuki M, Tanaka S. Molecular and cellular regulation of water homeostasis in anuran amphibians by aquaporins. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:231-41. [DOI: 10.1016/j.cbpa.2009.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 12/11/2022]
|
18
|
Tokuda S, Niisato N, Nagai T, Taruno A, Nakajima KI, Miyazaki H, Yamada T, Hosogi S, Ohta M, Nishio K, Iwasaki Y, Marunaka Y. Regulation of paracellular Na+ and Cl(-) conductances by hydrostatic pressure. Cell Biol Int 2009; 33:949-56. [PMID: 19524694 DOI: 10.1016/j.cellbi.2009.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 04/24/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
Abstract
The effect of hydrostatic pressure on the paracellular ion conductance (Gp) composed of the Na(+) conductance (G(Na)) and the Cl(-) conductance (G(Cl)) has been Investigated. Gp, G(Na) and G(Cl) were time-dependently increased after applying an osmotic gradient generated by NaCl with basolateral hypotonicity. Hydrostatic pressure (1-4cm H2O) applied from the basolateral side enhanced the osmotic gradient-induced increase in Gp, G(Na) and G(Cl) in a magnitude-dependent manner, while the hydrostatic pressure applied from the apical side diminished the osmotic gradient-induced increase in Gp, G(Na) and G(Cl). How the hydrostatic pressure influences Gp, G(Na) and G(Cl) under an isosmotic condition was also investigated. Gp, G(Na) and G(Cl) were stably constant under a condition with basolateral application of sucrose canceling the NaCl-generated osmotic gradient (an isotonic condition). Even under this stable condition, the basolaterally applied hydrostatic pressure drastically elevated Gp, G(Na) and G(Cl), while apically applied hydrostatic pressure had little effect on Gp, G(Na) or G(Cl). Taken together, these observations suggest that certain factors controlled by the basolateral osmolality and the basolaterally applied hydrostatic pressure mainly regulate the Gp, G(Na) and G(Cl).
Collapse
Affiliation(s)
- Shinsaku Tokuda
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Larsen EH, Willumsen NJ, Møbjerg N, Sørensen JN. The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol (Oxf) 2009; 195:171-86. [PMID: 18983444 DOI: 10.1111/j.1748-1716.2008.01930.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solute-coupled water transport and isotonic transport are basic functions of low- and high-resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than that of the interspace basement membrane, all of the water leaves the epithelium through the interspace basement membrane. The common design of transporting epithelia leads to the theory that an osmotic coupling of water absorption to ion flow is energized by lateral Na(+)/K(+) pumps. We show that the theory accounts quantitatively for steady- and time dependent states of solute-coupled fluid uptake by toad skin epithelium. Our experimental results exclude definitively three alternative theories of epithelial solute-water coupling: stoichiometric coupling at the molecular level by transport proteins like SGLT1, electro-osmosis and a 'junctional fluid transfer mechanism'. Convection-diffusion out of the lateral space constitutes the fundamental problem of isotonic transport by making the emerging fluid hypertonic relative to the fluid in the lateral intercellular space. In the Na(+) recirculation theory the 'surplus of solutes' is returned to the lateral space via the cells energized by the lateral Na(+)/K(+) pumps. We show that this theory accounts quantitatively for isotonic and hypotonic transport at transepithelial osmotic equilibrium as observed in toad skin epithelium in vitro. Our conclusions are further developed for discussing their application to solute-solvent coupling in other vertebrate epithelia such as small intestine, proximal tubule of glomerular kidney and gallbladder. Evidence is discussed that the Na(+) recirculation theory is not irreconcilable with the wide range of metabolic cost of Na(+) transport observed in fluid-transporting epithelia.
Collapse
Affiliation(s)
- E H Larsen
- Department of Biology, August Krogh Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
21
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
22
|
Abstract
This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.
Collapse
Affiliation(s)
- Oscar A Candia
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
23
|
Nielsen R, Larsen EH. Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:64-71. [PMID: 17287136 DOI: 10.1016/j.cbpa.2006.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 12/14/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1.2+/-0.3 to 2.4+/-0.4 mS x cm(-2) and slower increases in equivalent short circuit current, I(SC)(Eqv) = -G(T) x V(T), from 12.7+/-3.2 to 33.1+/-6.8 microA cm(-2), and J(V) from 0.72+/-0.17 to 3.01+/-0.49 nL cm(-2) s(-1). Amiloride in the outside solution abolished I(SC)(Eqv) (-1.6+/-0.1 microA cm(-2)) while J(V) decreased to 0.50+/-0.15 nL cm(-2) x s(-1), which is significantly different from zero. Isoproterenol decreased the osmotic concentration of the transported fluid, C(osm) approximately 2 x I(SC)(Eqv)/J(V), from 351+/-72 to 227+/-28 mOsm (Ringer's solution: 252.8 mOsm). J(V) depicted a saturating function of [Na+]out in agreement with Na+ self-inhibition of ENaC. Ouabain on the inside decreased I(SC)(Eqv) from 60+/-10 to 6.1+/-1.7 microA cm(-2), and J(V) from 3.34+/-0.47 to 1.40+/-0.24 nL cm(-2) x s(-1). Short-circuited preparations exhibited a linear relationship between short-circuit current and J(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased deltaC(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.
Collapse
Affiliation(s)
- Robert Nielsen
- Institute of Molecular Biology and Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
24
|
Introduction to the special issue on water transport. Comp Biochem Physiol A Mol Integr Physiol 2007. [DOI: 10.1016/j.cbpa.2007.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Grosell M, Gilmour KM, Perry SF. Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2099-111. [PMID: 17761514 DOI: 10.1152/ajpregu.00156.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.
Collapse
Affiliation(s)
- Martin Grosell
- Rosensteil School of Marine Atmospheric Sciences, University of Miami, FL 33149-1098, USA.
| | | | | |
Collapse
|