1
|
Zhang Y, Shen B, Wu T, Zhao J, Jing JC, Wang P, Sasaki-Capela K, Dunphy WG, Garrett D, Maslov K, Wang W, Wang LV. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nat Commun 2022; 13:5247. [PMID: 36068212 PMCID: PMC9448739 DOI: 10.1038/s41467-022-33002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
Many ultrafast phenomena in biology and physics are fundamental to our scientific understanding but have not yet been visualized owing to the extreme speed and sensitivity requirements in imaging modalities. Two examples are the propagation of passive current flows through myelinated axons and electromagnetic pulses through dielectrics, which are both key to information processing in living organisms and electronic devices. Here, we demonstrate differentially enhanced compressed ultrafast photography (Diff-CUP) to directly visualize propagations of passive current flows at approximately 100 m/s along internodes, i.e., continuous myelinated axons between nodes of Ranvier, from Xenopus laevis sciatic nerves and of electromagnetic pulses at approximately 5 × 107 m/s through lithium niobate. The spatiotemporal dynamics of both propagation processes are consistent with the results from computational models, demonstrating that Diff-CUP can span these two extreme timescales while maintaining high phase sensitivity. With its ultrahigh speed (picosecond resolution), high sensitivity, and noninvasiveness, Diff-CUP provides a powerful tool for investigating ultrafast biological and physical phenomena.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Binglin Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tong Wu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Space Photoelectric Detection and Perception, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jerry Zhao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Joseph C Jing
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Peng Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kanomi Sasaki-Capela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David Garrett
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
3
|
Sorigué D, Hadjidemetriou K, Blangy S, Gotthard G, Bonvalet A, Coquelle N, Samire P, Aleksandrov A, Antonucci L, Benachir A, Boutet S, Byrdin M, Cammarata M, Carbajo S, Cuiné S, Doak RB, Foucar L, Gorel A, Grünbein M, Hartmann E, Hienerwadel R, Hilpert M, Kloos M, Lane TJ, Légeret B, Legrand P, Li-Beisson Y, Moulin SLY, Nurizzo D, Peltier G, Schirò G, Shoeman RL, Sliwa M, Solinas X, Zhuang B, Barends TRM, Colletier JP, Joffre M, Royant A, Berthomieu C, Weik M, Domratcheva T, Brettel K, Vos MH, Schlichting I, Arnoux P, Müller P, Beisson F. Mechanism and dynamics of fatty acid photodecarboxylase. Science 2021; 372:372/6538/eabd5687. [PMID: 33833098 DOI: 10.1126/science.abd5687] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.
Collapse
Affiliation(s)
- D Sorigué
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - K Hadjidemetriou
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - S Blangy
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Gotthard
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - A Bonvalet
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - N Coquelle
- Large-Scale Structures Group, Institut Laue Langevin, 38042 Grenoble Cedex 9, France
| | - P Samire
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - A Aleksandrov
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - L Antonucci
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Benachir
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - S Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, F-Rennes, France.
| | - S Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Cuiné
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - R B Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - L Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - A Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - E Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R Hienerwadel
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - M Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - T J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - B Légeret
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - P Legrand
- Synchrotron SOLEIL. L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Y Li-Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - S L Y Moulin
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - D Nurizzo
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - G Peltier
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - R L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000 Lille, France
| | - X Solinas
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - B Zhuang
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - T R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - J-P Colletier
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Joffre
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Royant
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.,European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - C Berthomieu
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - M Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - T Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. .,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - K Brettel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - M H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - I Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - P Arnoux
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - P Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - F Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
4
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
5
|
Heyes DJ, Lakavath B, Hardman SJO, Sakuma M, Hedison TM, Scrutton NS. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. ACS Catal 2020; 10:6691-6696. [PMID: 32905273 PMCID: PMC7469136 DOI: 10.1021/acscatal.0c01684] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Indexed: 01/06/2023]
Abstract
![]()
Fatty
acid photodecarboxylase (FAP) is a promising target for the
production of biofuels and fine chemicals. It contains a flavin adenine
dinucleotide cofactor and catalyzes the blue-light-dependent decarboxylation
of fatty acids to generate the corresponding alkane. However, little
is known about the catalytic mechanism of FAP, or how light is used
to drive enzymatic decarboxylation. Here, we have used a combination
of time-resolved and cryogenic trapping UV–visible absorption
spectroscopy to characterize a red-shifted flavin intermediate observed
in the catalytic cycle of FAP. We show that this intermediate can
form below the “glass transition” temperature of proteins,
whereas the subsequent decay of the species proceeds only at higher
temperatures, implying a role for protein motions in the decay of
the intermediate. Solvent isotope effect measurements, combined with
analyses of selected site-directed variants of FAP, suggest that the
formation of the red-shifted flavin species is directly coupled with
hydrogen atom transfer from a nearby active site cysteine residue,
yielding the final alkane product. Our study suggests that this cysteine
residue forms a thiolate-flavin charge-transfer species, which is
assigned as the red-shifted flavin intermediate. Taken together, our
data provide insights into light-dependent decarboxylase mechanisms
catalyzed by FAP and highlight important considerations in the (re)design
of flavin-based photoenzymes.
Collapse
Affiliation(s)
- Derren J. Heyes
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Balaji Lakavath
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Tobias M. Hedison
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
6
|
Su D, Smitherman C, Gadda G. A Metastable Photoinduced Protein–Flavin Adduct in Choline Oxidase, an Enzyme Not Involved in Light-Dependent Processes. J Phys Chem B 2020; 124:3936-3943. [DOI: 10.1021/acs.jpcb.0c02633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Kuroi K, Kamijo M, Ueki M, Niwa Y, Hiramatsu H, Nakabayashi T. Time-resolved FTIR study on the structural switching of human galectin-1 by light-induced disulfide bond formation. Phys Chem Chem Phys 2020; 22:1137-1144. [DOI: 10.1039/c9cp04881b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced disulfide bond technique, which we have previously developed, has enabled the time-resolved measurement of the disulfide-induced conformational switching of the lectin protein human galectin-1.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| | - Mana Kamijo
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mutsuki Ueki
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yusuke Niwa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| |
Collapse
|
8
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
9
|
Ai Y, Zhao C, Xing J, Liu Y, Wang Z, Jin J, Xia S, Cui G, Wang X. Excited-State Decay Pathways of Flavin Molecules in Five Redox Forms: The Role of Conical Intersections. J Phys Chem A 2018; 122:7954-7961. [DOI: 10.1021/acs.jpca.8b07582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuejie Ai
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Chaofeng Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Jinlu Xing
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Yang Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Zhangxia Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Jiaren Jin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Shuhua Xia
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
10
|
Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E, Richaud P, Brugière S, Couté Y, Nurizzo D, Müller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. An algal photoenzyme converts fatty acids to hydrocarbons. Science 2018; 357:903-907. [PMID: 28860382 DOI: 10.1126/science.aan6349] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Although many organisms capture or respond to sunlight, few enzymes are known to be driven by light. Among these are DNA photolyases and the photosynthetic reaction centers. Here, we show that the microalga Chlorella variabilis NC64A harbors a photoenzyme that acts in lipid metabolism. This enzyme belongs to an algae-specific clade of the glucose-methanol-choline oxidoreductase family and catalyzes the decarboxylation of free fatty acids to n-alkanes or -alkenes in response to blue light. Crystal structure of the protein reveals a fatty acid-binding site in a hydrophobic tunnel leading to the light-capturing flavin adenine dinucleotide (FAD) cofactor. The decarboxylation is initiated through electron abstraction from the fatty acid by the photoexcited FAD with a quantum yield >80%. This photoenzyme, which we name fatty acid photodecarboxylase, may be useful in light-driven, bio-based production of hydrocarbons.
Collapse
Affiliation(s)
- Damien Sorigué
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphan Cuiné
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphanie Blangy
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Solène Moulin
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Emmanuelle Billon
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pierre Richaud
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - David Pignol
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pascal Arnoux
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Fred Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
11
|
Kaplan M, Yoo B, Tang J, Karam TE, Liao B, Majumdar D, Baltimore D, Jensen GJ, Zewail AH. Photon‐Induced Near‐Field Electron Microscopy of Eukaryotic Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammed Kaplan
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| | - Byung‐Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| | - Jau Tang
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| | - Tony E. Karam
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| | - Bolin Liao
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| | - Devdoot Majumdar
- Division of Biology and Biological Engineering California Institute of Technology Pasadena CA USA
| | - David Baltimore
- Division of Biology and Biological Engineering California Institute of Technology Pasadena CA USA
| | - Grant J. Jensen
- California Institute of Technology Pasadena CA 91125 USA
- Howard Hughes Medical Institute Pasadena CA 91125 USA
| | - Ahmed H. Zewail
- Physical Biology Center for Ultrafast Science and Technology Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
12
|
Kaplan M, Yoo BK, Tang J, Karam TE, Liao B, Majumdar D, Baltimore D, Jensen GJ, Zewail AH. Photon-Induced Near-Field Electron Microscopy of Eukaryotic Cells. Angew Chem Int Ed Engl 2017; 56:11498-11501. [PMID: 28736869 DOI: 10.1002/anie.201706120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/09/2022]
Abstract
Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Byung-Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jau Tang
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tony E Karam
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bolin Liao
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Devdoot Majumdar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- California Institute of Technology, Pasadena, CA, 91125, USA.,Howard Hughes Medical Institute, Pasadena, CA, 91125, USA
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
13
|
Abstract
Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.
Collapse
Affiliation(s)
- Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
14
|
The molecular origin of high DNA-repair efficiency by photolyase. Nat Commun 2015; 6:7302. [PMID: 26065359 DOI: 10.1038/ncomms8302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/24/2015] [Indexed: 11/08/2022] Open
Abstract
The primary dynamics in photomachinery such as charge separation in photosynthesis and bond isomerization in sensory photoreceptor are typically ultrafast to accelerate functional dynamics and avoid energy dissipation. The same is also true for the DNA repair enzyme, photolyase. However, it is not known how the photoinduced step is optimized in photolyase to attain maximum efficiency. Here, we analyse the primary reaction steps of repair of ultraviolet-damaged DNA by photolyase using femtosecond spectroscopy. With systematic mutations of the amino acids involved in binding of the flavin cofactor and the cyclobutane pyrimidine dimer substrate, we report our direct deconvolution of the catalytic dynamics with three electron-transfer and two bond-breaking elementary steps and thus the fine tuning of the biological repair function for optimal efficiency. We found that the maximum repair efficiency is not enhanced by the ultrafast photoinduced process but achieved by the synergistic optimization of all steps in the complex repair reaction.
Collapse
|
15
|
Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments. Life (Basel) 2015; 5:1172-203. [PMID: 25830590 PMCID: PMC4500134 DOI: 10.3390/life5021172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes.
Collapse
|
16
|
Wang J, Du X, Pan W, Wang X, Wu W. Photoactivation of the cryptochrome/photolyase superfamily. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Kohse S, Neubauer A, Lochbrunner S, Kragl U. Improving the Time Resolution for Remote Control of Enzyme Activity by a Nanosecond Laser-Induced pH Jump. ChemCatChem 2014. [DOI: 10.1002/cctc.201402442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Świderek K, Tuñón I, Moliner V. Predicting enzymatic reactivity: from theory to design. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katarzyna Świderek
- Departamento de Química FísicaUniversidad de ValenciaValenciaSpain
- Institute of Applied Radiation ChemistryLodz University of TechnologyLodzPoland
| | - Iñaki Tuñón
- Departamento de Química FísicaUniversidad de ValenciaValenciaSpain
| | - Vicent Moliner
- Departament de Química Física i AnalíticaUniversitat Jaume ICastellónSpain
| |
Collapse
|
19
|
Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. Photoswitching of Enzyme Activity by Laser-Induced pH-Jump. J Am Chem Soc 2013; 135:9407-11. [DOI: 10.1021/ja400700x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefanie Kohse
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Antje Neubauer
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Alexandra Pazidis
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18055
Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| | - Udo Kragl
- Department of Chemistry, University of Rostock, Albert-Einstein-Straße
3a, D-18059 Rostock, Germany
- Faculty
of Interdisciplinary Research, University of Rostock, Wismarsche Straße 8, D-18057
Rostock, Germany
| |
Collapse
|
20
|
LeBard DN, Martin DR, Lin S, Woodbury NW, Matyushov DV. Protein dynamics to optimize and control bacterial photosynthesis. Chem Sci 2013. [DOI: 10.1039/c3sc51327k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
21
|
Liu Z, Guo X, Tan C, Li J, Kao YT, Wang L, Sancar A, Zhong D. Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. J Am Chem Soc 2012; 134:8104-14. [PMID: 22533849 DOI: 10.1021/ja2105009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron tunneling pathways in enzymes are critical to their catalytic efficiency. Through electron tunneling, photolyase, a photoenzyme, splits UV-induced cyclobutane pyrimidine dimer into two normal bases. Here, we report our systematic characterization and analyses of photoinitiated three electron transfer processes and cyclobutane ring splitting by following the entire dynamical evolution during enzymatic repair with femtosecond resolution. We observed the complete dynamics of the reactants, all intermediates and final products, and determined their reaction time scales. Using (deoxy)uracil and thymine as dimer substrates, we unambiguously determined the electron tunneling pathways for the forward electron transfer to initiate repair and for the final electron return to restore the active cofactor and complete the catalytic photocycle. Significantly, we found that the adenine moiety of the unusual bent flavin cofactor is essential to mediating all electron-transfer dynamics through a superexchange mechanism, leading to a delicate balance of time scales. The cyclobutane ring splitting takes tens of picoseconds, while electron-transfer dynamics all occur on a longer time scale. The active-site structural integrity, unique electron tunneling pathways, and the critical role of adenine ensure the synergy of these elementary steps in this complex photorepair machinery to achieve maximum repair efficiency which is close to unity. Finally, we used the Marcus electron-transfer theory to evaluate all three electron-transfer processes and thus obtained their reaction driving forces (free energies), reorganization energies, and electronic coupling constants, concluding that the forward and futile back-electron transfer is in the normal region and that the final electron return of the catalytic cycle is in the inverted region.
Collapse
Affiliation(s)
- Zheyun Liu
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ai YJ, Liao RZ, Chen SL, Hua WJ, Fang WH, Luo Y. Repair of DNA Dewar photoproduct to (6-4) photoproduct in (6-4) photolyase. J Phys Chem B 2011; 115:10976-82. [PMID: 21834563 DOI: 10.1021/jp204128k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dewar photoproduct (Dewar PP) is the valence isomer of (6-4) photoproduct ((6-4)PP) in photodamaged DNA. Compared to the extensive studied CPD photoproducts, the underlying repair mechanisms for the (6-4)PP, and especially for the Dewar PP, are not well-established to date. In this paper, the repair mechanism of DNA Dewar photoproduct T(dew)C in (6-4) photolyase was elucidated using hybrid density functional theory. Our results showed that, during the repair process, the T(dew)C has to isomerize to T(6-4)C photolesion first via direct C6'-N3' bond cleavage facilitated by electron injection. This isomerization mechanism is energetically much more efficient than other possible rearrangement pathways. The calculations provide a theoretical interpretation to recent experimental observations.
Collapse
Affiliation(s)
- Yue-Jie Ai
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc Natl Acad Sci U S A 2011; 108:14831-6. [PMID: 21804035 DOI: 10.1073/pnas.1110927108] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photolyase uses blue light to restore the major ultraviolet (UV)-induced DNA damage, the cyclobutane pyrimidine dimer (CPD), to two normal bases by splitting the cyclobutane ring. Our earlier studies showed that the overall repair is completed in 700 ps through a cyclic electron-transfer radical mechanism. However, the two fundamental processes, electron-tunneling pathways and cyclobutane ring splitting, were not resolved. Here, we use ultrafast UV absorption spectroscopy to show that the CPD splits in two sequential steps within 90 ps and the electron tunnels between the cofactor and substrate through a remarkable route with an intervening adenine. Site-directed mutagenesis reveals that the active-site residues are critical to achieving high repair efficiency, a unique electrostatic environment to optimize the redox potentials and local flexibility, and thus balance all catalytic reactions to maximize enzyme activity. These key findings reveal the complete spatio-temporal molecular picture of CPD repair by photolyase and elucidate the underlying molecular mechanism of the enzyme's high repair efficiency.
Collapse
|
24
|
Thielges MC, Chung JK, Axup JY, Fayer MD. Influence of histidine tag attachment on picosecond protein dynamics. Biochemistry 2011; 50:5799-805. [PMID: 21619030 PMCID: PMC3133630 DOI: 10.1021/bi2003923] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polyhistidine affinity tags are routinely employed as a convenient means of purifying recombinantly expressed proteins. A tacit assumption is commonly made that His tags have little influence on protein structure and function. Attachment of a His tag to the N-terminus of the robust globular protein myoglobin leads to only minor changes to the electrostatic environment of the heme pocket, as evinced by the nearly unchanged Fourier transform infrared spectrum of CO bound to the heme of His-tagged myoglobin. Experiments employing two-dimensional infrared vibrational echo spectroscopy of the heme-bound CO, however, find that significant changes occur to the short time scale (picoseconds) dynamics of myoglobin as a result of His tag incorporation. The His tag mainly reduces the dynamics on the 1.4 ps time scale and also alters protein motions of myoglobin on the slower, >100 ps time scale, as demonstrated by the His tag's influence on the fluctuations of the CO vibrational frequency, which reports on protein structural dynamics. The results suggest that affinity tags may have effects on protein function and indicate that investigators of affinity-tagged proteins should take this into consideration when investigating the dynamics and other properties of such proteins.
Collapse
Affiliation(s)
- Megan C Thielges
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jun Y. Axup
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
25
|
Hanf R, Fey S, Dietzek B, Schmitt M, Reinbothe C, Reinbothe S, Hermann G, Popp J. Protein-induced excited-state dynamics of protochlorophyllide. J Phys Chem A 2011; 115:7873-81. [PMID: 21678944 DOI: 10.1021/jp2035899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The light-driven NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. POR's unique requirement for light to become catalytically active makes the enzyme an attractive model to study the dynamics of enzymatic reactions in real time. Here, we use picosecond time-resolved fluorescence and femtosecond pump-probe spectroscopy to examine the influence of the protein environment on the excited-state dynamics of the substrate, protochlorophyllide (PChlide), in the enzyme/substrate (PChlide/POR) and pseudoternary complex including the nucleotide cofactor NADP(+) (PChlide/NADP(+)/ POR). In comparison with the excited-state processes of unbound PChlide, the lifetime of the thermally equilibrated S(1) excited state is lengthened from 3.4 to 4.4 and 5.4 ns in the PChlide/POR and PChlide/NADP(+)/POR complex, whereas the nonradiative rates are decreased by ∼30 and 40%, respectively. This effect is most likely due to the reduced probability of nonradiative decay into the triplet excited state, thus keeping the risk of photosensitized side reactions in the enzyme low. Further, the initial reaction path involves the formation of an intramolecular charge-transfer state (S(ICT)) as an intermediate product. From a strong blue shift in the excited-state absorption, it is concluded that the S(ICT) state is stabilized by local interactions with specific protein sites in the catalytic pocket. The possible relevance of this result for the catalytic reaction in the enzyme POR is discussed.
Collapse
Affiliation(s)
- Robert Hanf
- Institute for Physical Chemistry and Abbe Centre of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 2010; 466:887-890. [PMID: 20657578 PMCID: PMC3018752 DOI: 10.1038/nature09192] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 08/12/2010] [Accepted: 05/20/2010] [Indexed: 01/02/2023]
Abstract
One of the detrimental effects of UV radiation on DNA is the formation of the (6-4) photoproduct (6-4PP) between two adjacent pyrimidines1. This lesion interferes with replication and transcription and may result in mutation and cell death2. In many organisms a flavoenzyme called photolyase uses blue light energy to repair the 6-4PP3. The molecular mechanism of the repair reaction is poorly understood. Here, we use ultrafast spectroscopy to show that the key step in the repair photocycle is a cyclic proton transfer between the enzyme and the substrate. By femtosecond synchronization of the enzymatic dynamics with the repair function, we followed the function evolution and observed direct electron transfer from the excited flavin cofactor to the 6-4PP in 225 ps but surprisingly fast back electron transfer in 50 ps without repair. Strikingly, we found that the catalytic proton transfer between a histidine residue in the active site and the 6-4PP, induced by the initial photoinduced electron transfer from the excited flavin cofactor to 6-4PP, occurs in 425 ps and leads to 6-4PP repair in tens of nanoseconds. These key dynamics define the repair photocycle and explain the underlying molecular mechanism of the enzyme’s modest efficiency.
Collapse
|
27
|
Dietzek B, Tschierlei S, Hanf R, Seidel S, Yartsev A, Schmitt M, Hermann G, Popp J. Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM. Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 2010; 285:18961-6. [PMID: 20382731 DOI: 10.1074/jbc.r109.011932] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an enzymatic reaction, altering the conformational energy of the substrate-enzyme interactions during catalysis. From these measurements, the force dependence of an enzymatic reaction can be determined. The force dependence provides valuable new information about the dynamics of enzyme catalysis with sub-angstrom resolution, a feat unmatched by any other current technique. To date, single-molecule force spectroscopy has been applied to gain insight into the reduction of disulfide bonds by different enzymes of the thioredoxin family. This minireview aims to present a perspective on this new approach to study enzyme catalysis and to summarize the results that have already been obtained from it. Finally, the specific requirements that must be fulfilled to apply this new methodology to any other enzyme will be discussed.
Collapse
|
29
|
Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair (Amst) 2010; 9:495-505. [PMID: 20227927 DOI: 10.1016/j.dnarep.2010.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 11/23/2022]
Abstract
Light-induced activation of class II cyclobutane pyrimidine dimer (CPD) photolyases of Arabidopsis thaliana and Oryza sativa has been examined by UV/Vis and pulsed Davies-type electron-nuclear double resonance (ENDOR) spectroscopy, and the results compared with structure-known class I enzymes, CPD photolyase and (6-4) photolyase. By ENDOR spectroscopy, the local environment of the flavin adenine dinucleotide (FAD) cofactor is probed by virtue of proton hyperfine couplings that report on the electron-spin density at the positions of magnetic nuclei. Despite the amino-acid sequence dissimilarity as compared to class I enzymes, the results indicate similar binding motifs for FAD in the class II photolyases. Furthermore, the photoreduction kinetics starting from the FAD cofactor in the fully oxidized redox state, FAD(ox), have been probed by UV/Vis spectroscopy. In Escherichia coli (class I) CPD photolyase, light-induced generation of FADH from FAD(ox), and subsequently FADH(-) from FADH, proceeds in a step-wise fashion via a chain of tryptophan residues. These tryptophans are well conserved among the sequences and within all known structures of class I photolyases, but completely lacking from the equivalent positions of class II photolyase sequences. Nevertheless, class II photolyases show photoreduction kinetics similar to those of the class I enzymes. We propose that a different, but also effective, electron-transfer cascade is conserved among the class II photolyases. The existence of such electron transfer pathways is supported by the observation that the catalytically active fully reduced flavin state obtained by photoreduction is maintained even under oxidative conditions in all three classes of enzymes studied in this contribution.
Collapse
|
30
|
Ultrafast solvation dynamics at binding and active sites of photolyases. Proc Natl Acad Sci U S A 2010; 107:2914-9. [PMID: 20133751 DOI: 10.1073/pnas.1000001107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic solvation at binding and active sites is critical to protein recognition and enzyme catalysis. We report here the complete characterization of ultrafast solvation dynamics at the recognition site of photoantenna molecule and at the active site of cofactor/substrate in enzyme photolyase by examining femtosecond-resolved fluorescence dynamics and the entire emission spectra. With direct use of intrinsic antenna and cofactor chromophores, we observed the local environment relaxation on the time scales from a few picoseconds to nearly a nanosecond. Unlike conventional solvation where the Stokes shift is apparent, we observed obvious spectral shape changes with the minor, small, and large spectral shifts in three function sites. These emission profile changes directly reflect the modulation of chromophore's excited states by locally constrained protein and trapped-water collective motions. Such heterogeneous dynamics continuously tune local configurations to optimize photolyase's function through resonance energy transfer from the antenna to the cofactor for energy efficiency and then electron transfer between the cofactor and the substrate for repair of damaged DNA. Such unusual solvation and synergetic dynamics should be general in function sites of proteins.
Collapse
|
31
|
DNA photolyase of enterococci: possible explanation for its low sunlight inactivation rate. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Ozturk N, Selby CP, Song SH, Ye R, Tan C, Kao YT, Zhong D, Sancar A. Comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 2009; 48:8585-93. [PMID: 19663499 PMCID: PMC2739604 DOI: 10.1021/bi901043s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptochromes (CRYs) are blue-light photoreceptors with known or presumed functions in light-dependent and light-independent gene regulation in plants and animals. Although the photochemistry of plant CRYs has been studied in some detail, the photochemical behavior of animal cryptochromes remains poorly defined in part because it has been difficult to purify animal CRYs with their flavin cofactors. Here we describe the purification of type 4 CRYs of zebrafish and chicken as recombinant proteins with full flavin complement and compare the spectroscopic properties of type 4 and type 1 CRYs. In addition, we analyzed photoinduced proteolytic degradation of both types of CRYs in vivo in heterologous systems. We find that even though both types of CRYs contain stoichiometric flavin, type 1 CRY is proteolytically degraded by a light-initiated reaction in Drosophila S2, zebrafish Z3, and human HEK293T cell lines, but zebrafish CRY4 (type 4) is not. In vivo degradation of type 1 CRYs does not require continuous illumination, and a single light flash of 1 ms duration leads to degradation of about 80% of Drosophila CRY in 60 min. Finally, we demonstrate that in contrast to animal type 2 CRYs and Arabidopsis CRY1 neither insect type 1 nor type 4 CRYs have autokinase activities.
Collapse
Affiliation(s)
- Nuri Ozturk
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhong D. Hydration Dynamics and Coupled Water-Protein Fluctuations Probed by Intrinsic Tryptophan. ADVANCES IN CHEMICAL PHYSICS 2009. [DOI: 10.1002/9780470508602.ch3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
34
|
Dietzek B, Tschierlei S, Hermann G, Yartsev A, Pascher T, Sundström V, Schmitt M, Popp J. Protochlorophyllide a: A Comprehensive Photophysical Picture. Chemphyschem 2009; 10:144-50. [PMID: 18855967 DOI: 10.1002/cphc.200800536] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The photochemistry of protochlorophyllide a, a precursor in the biosynthesis of chlorophyll and substrate of the light regulated enzyme protochlorophyllide oxidoreductase, is investigated by pump-probe spectroscopy. Upon excitation into the lowest lying Q-band the light induced changes are recorded over a wide range of probe wavelengths in the visible and near-IR region between 500 and 1000 nm. Following excitation, an initial ultrafast 450 fs process is observed related to the motion out of the Franck-Condon region on the excited state surface; thus directly unraveling previous suggestions based on time-resolved fluorescence measurements (ChemPhysChem 2006, 7, 1727-1733). Furthermore, the data reveals a previously concealed photointermediate, whose formation on a nanosecond timescale matches the overall fluorescence decay and is assigned to a triplet state. The implications of this finding with respect to the photochemistry of NADPH:protochlorophyllide oxidoreductase (POR) are discussed.
Collapse
Affiliation(s)
- Benjamin Dietzek
- Institute for Physical Chemistry, University Jena, Lessingstrasse 10, 07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Oztürk N, Kao YT, Selby CP, Kavakli IH, Partch CL, Zhong D, Sancar A. Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry 2008; 47:10255-61. [PMID: 18771290 DOI: 10.1021/bi801085a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photolyase/cryptochrome family is a large family of flavoproteins that encompasses DNA repair proteins, photolyases, and cryptochromes that regulate blue-light-dependent growth and development in plants, and light-dependent and light-independent circadian clock setting in animals. Phylogenetic analysis has revealed a new class of the family, named type III photolyase, which cosegregates with plant cryptochromes. Here we describe the isolation and characterization of a type III photolyase from Caulobacter crescentus. Spectroscopic analysis shows that the enzyme contains both the methenyl tetrahydrofolate photoantenna and the FAD catalytic cofactor. Biochemical analysis shows that it is a bona fide photolyase that repairs cyclobutane pyrimidine dimers. Mutation of an active site Trp to Arg disrupts FAD binding with no measurable effect on MTHF binding. Using enzyme preparations that contain either both chromophores or only folate, we were able to determine the efficiency and rate of transfer of energy from MTHF to FAD.
Collapse
Affiliation(s)
- Nuri Oztürk
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Oztürk N, Song SH, Ozgür S, Selby CP, Morrison L, Partch C, Zhong D, Sancar A. Structure and function of animal cryptochromes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:119-31. [PMID: 18419269 DOI: 10.1101/sqb.2007.72.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cryptochrome (CRY) is a photolyase-like flavoprotein with no DNA-repair activity but with known or presumed blue-light receptor function. Animal CRYs have DNA-binding and autokinase activities, and their flavin cofactor is reduced by photoinduced electron transfer. In Drosophila, CRY is a major circadian photoreceptor, and in mammals, the two CRY proteins are core components of the molecular clock and potential circadian photoreceptors. In mammals, CRYs participate in cell cycle regulation and the cellular response to DNA damage by controlling the expression of some cell cycle genes and by directly interacting with checkpoint proteins.
Collapse
Affiliation(s)
- N Oztürk
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kao YT, Tan C, Song SH, Öztürk N, Li J, Wang L, Sancar A, Zhong D. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J Am Chem Soc 2008; 130:7695-701. [PMID: 18500802 PMCID: PMC2661107 DOI: 10.1021/ja801152h] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here our systematic studies of the dynamics of four redox states of the flavin cofactor in both photolyases and insect type 1 cryptochromes. With femtosecond resolution, we observed ultrafast photoreduction of oxidized state flavin adenine dinucleotide (FAD) in subpicosecond and of neutral radical semiquinone (FADH(*)) in tens of picoseconds through intraprotein electron transfer mainly with a neighboring conserved tryptophan triad. Such ultrafast dynamics make these forms of flavin unlikely to be the functional states of the photolyase/cryptochrome family. In contrast, we find that upon excitation the anionic semiquinone (FAD(*-)) and hydroquinone (FADH(-)) have longer lifetimes that are compatible with high-efficiency intermolecular electron transfer reactions. In photolyases, the excited active state (FADH(-)*) has a long (nanosecond) lifetime optimal for DNA-repair function. In insect type 1 cryptochromes known to be blue-light photoreceptors the excited active form (FAD(*-)*) has complex deactivation dynamics on the time scale from a few to hundreds of picoseconds, which is believed to occur through conical intersection(s) with a flexible bending motion to modulate the functional channel. These unique properties of anionic flavins suggest a universal mechanism of electron transfer for the initial functional steps of the photolyase/cryptochrome blue-light photoreceptor family.
Collapse
Affiliation(s)
- Ya-Ting Kao
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210
| | - Chuang Tan
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210
| | - Sang-Hun Song
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Mary Ellen Jones Building, CB 7260, Chapel Hill, NC 27599
| | - Nuri Öztürk
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Mary Ellen Jones Building, CB 7260, Chapel Hill, NC 27599
| | - Jiang Li
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210
| | - Lijuan Wang
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Mary Ellen Jones Building, CB 7260, Chapel Hill, NC 27599
| | - Dongping Zhong
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210
| |
Collapse
|
38
|
|
39
|
Kao YT, Saxena C, Wang L, Sancar A, Zhong D. Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochem Biophys 2007; 48:32-44. [PMID: 17703066 DOI: 10.1007/s12013-007-0034-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Photolyase uses light energy to split UV-induced cyclobutane pyrimidine dimers in damaged DNA. This photoenzyme encompasses a series of elementary dynamical processes during repair function from early photoinitiation by a photoantenna molecule to enhance repair efficiency, to in vitro photoreduction through aromatic residues to reconvert the cofactor to the active form, and to final photorepair to fix damaged DNA. The corresponding series of dynamics include resonance energy transfer, intraprotein electron transfer, and intermolecular electron transfer, bond breaking-making rearrangements and back electron return, respectively. We review here our recent direct studies of these dynamical processes in real time, which showed that all these elementary reactions in the enzyme occur within subnanosecond timescale. Active-site solvation was observed to play a critical role in the continuous modulation of catalytic reactions. As a model system for enzyme catalysis, we isolated the enzyme-substrate complex in the transition-state region and mapped out the entire evolution of unmasked catalytic reactions of DNA repair. These observed synergistic motions in the active site reveal a perfect correlation of structural integrity and dynamical locality to ensure maximum repair efficiency on the ultrafast time scale.
Collapse
Affiliation(s)
- Ya-Ting Kao
- Department of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|