1
|
Bavis RW, Dirstine T, Lachance AD, Jareno A, Reynoso Williams M. Recovery of the biphasic hypoxic ventilatory response in neonatal rats after chronic hyperoxia. Respir Physiol Neurobiol 2023; 307:103973. [DOI: 10.1016/j.resp.2022.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
2
|
Survival, Growth, and Development in the Early Stages of the Tropical Gar Atractosteus tropicus: Developmental Critical Windows and the Influence of Temperature, Salinity, and Oxygen Availability. FISHES 2021. [DOI: 10.3390/fishes6010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations in fish developmental trajectories occur in response to genetic and environmental changes, especially during sensitive periods of development (critical windows). Embryos and larvae of Atractosteus tropicus were used as a model to study fish survival, growth, and development as a function of temperature (28 °C control, 33 °C, and 36 °C), salinity (0.0 ppt control, 4.0 ppt, and 6.0 ppt), and air saturation (control ~95% air saturation, hypoxia ~30% air saturation, and hyperoxia ~117% air saturation) during three developmental periods: (1) fertilization to hatch, (2) day 1 to day 6 post hatch (dph), and (3) 7 to 12 dph. Elevated temperature, hypoxia, and hyperoxia decreased survival during incubation, and salinity at 2 and 3 dph. Growth increased in embryos incubated at elevated temperature, at higher salinity, and in hyperoxia but decreased in hypoxia. Changes in development occurred as alterations in the timing of hatching, yolk depletion, acceptance of exogenous feeding, free swimming, and snout shape change, especially at high temperature and hypoxia. Our results suggest identifiable critical windows of development in the early ontogeny of A. tropicus and contribute to the knowledge of fish larval ecology and the interactions of individuals × stressors × time of exposure.
Collapse
|
3
|
McCoy JCS, Spicer JI, Tills O, Rundle SD. Both maternal and embryonic exposure to mild hypoxia influence embryonic development of the intertidal gastropod Littorina littorea. J Exp Biol 2020; 223:jeb221895. [PMID: 32843360 DOI: 10.1242/jeb.221895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
There is growing evidence that maternal exposure to environmental stressors can alter offspring phenotype and increase fitness. Here, we investigate the relative and combined effects of maternal and developmental exposure to mild hypoxia (65 and 74% air saturation, respectively) on the growth and development of embryos of the marine gastropod Littorina littorea Differences in embryo morphological traits were driven by the developmental environment, whereas the maternal environment and interactive effects of maternal and developmental environment were the main driver of differences in the timing of developmental events. While developmental exposure to mild hypoxia significantly increased the area of an important respiratory organ, the velum, it significantly delayed hatching of veliger larvae and reduced their size at hatching and overall survival. Maternal exposure had a significant effect on these traits, and interacted with developmental exposure to influence the time of appearance of morphological characters, suggesting that both are important in affecting developmental trajectories. A comparison between embryos that successfully hatched and those that died in mild hypoxia revealed that survivors exhibited hypertrophy in the velum and associated pre-oral cilia, suggesting that these traits are linked with survival in low-oxygen environments. We conclude that both maternal and developmental environments shape offspring phenotype in a species with a complex developmental life history, and that plasticity in embryo morphology arising from exposure to even small reductions in oxygen tensions affects the hatching success of these embryos.
Collapse
Affiliation(s)
- James C S McCoy
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Simon D Rundle
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
4
|
Pinette M, Bavis RW. Influence of chronic hyperoxia on the developmental time course of the hypoxic ventilatory response relative to other traits in rats. Respir Physiol Neurobiol 2020; 280:103483. [PMID: 32593590 DOI: 10.1016/j.resp.2020.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR) in which an initial increase in ventilation is followed by a decline back toward baseline levels. The magnitude of the secondary decline diminishes with postnatal age, but this transition occurs earlier in rat pups reared in moderate hyperoxia. This pattern is consistent with heterokairy, a form of developmental plasticity in which environmental factors alter the timing of developmental events. The present study investigated whether this plasticity is specific to the HVR or if hyperoxia instead accelerates overall development. Rat pups reared in 60 % O2 (Hyperoxia) exhibited a less biphasic ventilatory response to 12 % O2 than pups reared in 21 % O2 (Control) at 4 days of age (P4) and transitioned to a sustained HVR by P10-11; Control rats exhibited a biphasic HVR at both ages. However, the average ages at which pups attained other key developmental milestones (i.e., fur development at P5, incisor eruption at P9, and eye opening at P15) were similar between treatment groups. Moreover, growth rates and maturation of the metabolic response to cooling were not accelerated, and may have been delayed slightly, relative to Control rats. For example, the capacity for pups to increase their metabolic rate at low ambient temperatures increased with age, but this thermogenic capacity tended to be reduced in Hyperoxia pups at both P4 and P10-11 (i.e., lower CO2 production rates below the lower critical temperature). Collectively, these data support the conclusion that hyperoxia specifically advances the age at which rat pups exhibit a sustained HVR, altering the relative timing of developmental events rather than compressing the entire period of development.
Collapse
Affiliation(s)
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME, 04240, USA.
| |
Collapse
|
5
|
Burggren WW. Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible? Front Physiol 2020; 10:1634. [PMID: 32038303 PMCID: PMC6987144 DOI: 10.3389/fphys.2019.01634] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalent view of developmental phenotypic switching holds that phenotype modifications occurring during critical windows of development are "irreversible" - that is, once produced by environmental perturbation, the consequent juvenile and/or adult phenotypes are indelibly modified. Certainly, many such changes appear to be non-reversible later in life. Yet, whether animals with switched phenotypes during early development are unable to return to a normal range of adult phenotypes, or whether they do not experience the specific environmental conditions necessary for them to switch back to the normal range of adult phenotypes, remains an open question. Moreover, developmental critical windows are typically brief, early periods punctuating a much longer period of overall development. This leaves open additional developmental time for reversal (correction) of a switched phenotype resulting from an adverse environment early in development. Such reversal could occur from right after the critical window "closes," all the way into adulthood. In fact, examples abound of the capacity to return to normal adult phenotypes following phenotypic changes enabled by earlier developmental plasticity. Such examples include cold tolerance in the fruit fly, developmental switching of mouth formation in a nematode, organization of the spinal cord of larval zebrafish, camouflage pigmentation formation in larval newts, respiratory chemosensitivity in frogs, temperature-metabolism relations in turtles, development of vascular smooth muscle and kidney tissue in mammals, hatching/birth weight in numerous vertebrates,. More extreme cases of actual reversal (not just correction) occur in invertebrates (e.g., hydrozoans, barnacles) that actually 'backtrack' along normal developmental trajectories from adults back to earlier developmental stages. While developmental phenotypic switching is often viewed as a permanent deviation from the normal range of developmental plans, the concept of developmental phenotypic switching should be expanded to include sufficient plasticity allowing subsequent correction resulting in the normal adult phenotype.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
6
|
Robertson CE, Tattersall GJ, McClelland GB. Development of homeothermic endothermy is delayed in high-altitude native deer mice (Peromyscus maniculatus). Proc Biol Sci 2019; 286:20190841. [PMID: 31337307 DOI: 10.1098/rspb.2019.0841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Altricial mammals begin to independently thermoregulate during the first few weeks of postnatal development. In wild rodent populations, this is also a time of high mortality (50-95%), making the physiological systems that mature during this period potential targets for selection. High altitude (HA) is a particularly challenging environment for small endotherms owing to unremitting low O2 and ambient temperatures. While superior thermogenic capacities have been demonstrated in adults of some HA species, it is unclear if selection has occurred to survive these unique challenges early in development. We used deer mice (Peromyscus maniculatus) native to high and low altitude (LA), and a strictly LA species (Peromyscus leucopus), raised under common garden conditions, to determine if postnatal onset of endothermy and maturation of brown adipose tissue (BAT) is affected by altitude ancestry. We found that the onset of endothermy corresponds with the maturation and activation of BAT at an equivalent age in LA natives, with 10-day-old pups able to thermoregulate in response to acute cold in both species. However, the onset of endothermy in HA pups was substantially delayed (by approx. 2 days), possibly driven by delayed sympathetic regulation of BAT. We suggest that this delay may be part of an evolved cost-saving measure to allow pups to maintain growth rates under the O2-limited conditions at HA.
Collapse
Affiliation(s)
- Cayleih E Robertson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada L2S 3A1
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
7
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
8
|
Rundle SD, Spicer JI. Heterokairy: a significant form of developmental plasticity? Biol Lett 2016; 12:20160509. [PMID: 27624796 PMCID: PMC5046929 DOI: 10.1098/rsbl.2016.0509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
There is a current surge of research interest in the potential role of developmental plasticity in adaptation and evolution. Here we make a case that some of this research effort should explore the adaptive significance of heterokairy, a specific type of plasticity that describes environmentally driven, altered timing of development within a species. This emphasis seems warranted given the pervasive occurrence of heterochrony, altered developmental timing between species, in evolution. We briefly review studies investigating heterochrony within an adaptive context across animal taxa, including examples that explore links between heterokairy and heterochrony. We then outline how sequence heterokairy could be included within the research agenda for developmental plasticity. We suggest that the study of heterokairy may be particularly pertinent in (i) determining the importance of non-adaptive plasticity, and (ii) embedding concepts from comparative embryology such as developmental modularity and disassociation within a developmental plasticity framework.
Collapse
Affiliation(s)
- S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, UK
| | - J I Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, UK
| |
Collapse
|
9
|
Rudin-Bitterli TS, Spicer JI, Rundle SD. Differences in the timing of cardio-respiratory development determine whether marine gastropod embryos survive or die in hypoxia. J Exp Biol 2016; 219:1076-85. [DOI: 10.1242/jeb.134411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022]
Abstract
Physiological plasticity of early developmental stages is a key way by which organisms can survive and adapt to environmental change. We investigated developmental plasticity of aspects of the cardio-respiratory physiology of encapsulated embryos of a marine, gastropod Littorina obtusata surviving exposure to moderate hypoxia (pO2=8 kPa) and compared the development of these survivors with that of individuals that died before hatching. Individuals surviving hypoxia exhibited a slower rate of development and altered ontogeny of cardio-respiratory structure and function compared with normoxic controls (pO2>20 kPa). The onset and development of the larval and adult hearts were delayed in chronological time in hypoxia, but both organs appeared earlier in developmental time and cardiac activity rates were greater. The velum, a transient, ‘larval’ organ thought to play a role in gas exchange, was larger in hypoxia but developed more slowly (in chronological time), and velar cilia-driven, rotational activity was lower. Despite these effects of hypoxia, 38% of individuals survived to hatching. Compared with those embryos that died during development, these surviving embryos had advanced expression of adult structures, i.e. a significantly earlier occurrence and greater activity of their adult heart and larger shells. In contrast, embryos that died retained larval cardio-respiratory features (the velum and larval heart) for longer in chronological time. Surviving embryos came from eggs with significantly higher albumen provisioning than those that died, suggesting an energetic component for advanced development of adult traits.
Collapse
Affiliation(s)
- T. S. Rudin-Bitterli
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - J. I. Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - S. D. Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
10
|
Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD. Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:113-24. [PMID: 25711780 DOI: 10.1016/j.cbpa.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development.
Collapse
Affiliation(s)
- C A Mueller
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Eme
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - R D Roghair
- Stead Family Department of Pediatrics, University of Iowa, 1270 CBRB JPP, Iowa City, IA 52242, USA.
| | - S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, 611 Davy Building Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
11
|
Mendez-Sanchez JF, Burggren WW. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus. JOURNAL OF FISH BIOLOGY 2014; 84:794-807. [PMID: 24502248 DOI: 10.1111/jfb.12322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf.
Collapse
Affiliation(s)
- J F Mendez-Sanchez
- University of North Texas, Department of Biological Sciences, Denton, TX 76203, U.S.A.; Departamento de Biología, Universidad Autónoma del Estado de México, Instituto Literario 100, Centro, Toluca, Estado de México 50120, México
| | | |
Collapse
|
12
|
Bavis RW, DeAngelis KJ, Horowitz TC, Reedich LM, March RJ. Hyperoxia-induced developmental plasticity of the hypoxic ventilatory response in neonatal rats: contributions of glutamate-dependent and PDGF-dependent mechanisms. Respir Physiol Neurobiol 2013; 191:84-94. [PMID: 24284036 DOI: 10.1016/j.resp.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Rats reared in hyperoxia exhibit a sustained (vs. biphasic) hypoxic ventilatory response (HVR) at an earlier age than untreated, Control rats. Given the similarity between the sustained HVR obtained after chronic exposure to developmental hyperoxia and the mature HVR, it was hypothesized that hyperoxia-induced plasticity and normal maturation share common mechanisms such as enhanced glutamate and nitric oxide signaling and diminished platelet-derived growth factor (PDGF) signaling. Rats reared in 21% O2 (Control) or 60% O2 (Hyperoxia) from birth until 4-5 days of age were studied after intraperitoneal injection of drugs targeting these pathways. Hyperoxia rats receiving saline showed a sustained HVR to 12% O2, but blockade of NMDA glutamate receptors (MK-801) restored the biphasic HVR typical of newborn rats. Blockade of PDGF-β receptors (imatinib) had no effect on the pattern of the HVR in Hyperoxia rats, although it attenuated ventilatory depression during the late phase of the HVR in Control rats. Neither nitric oxide synthase inhibitor used in this study (nNOS inhibitor I and l-NAME) altered the pattern of the HVR in Control or Hyperoxia rats. Drug-induced changes in the biphasic HVR were not correlated with changes in metabolic rate. Collectively, these results suggest that developmental hyperoxia hastens the transition from a biphasic to sustained HVR by upregulating glutamate-dependent mechanisms and downregulating PDGF-dependent mechanisms, similar to the changes underlying normal postnatal maturation of the biphasic HVR.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | | - Lisa M Reedich
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Ryan J March
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| |
Collapse
|
13
|
Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI. A genetic basis for intraspecific differences in developmental timing? Evol Dev 2013; 13:542-8. [PMID: 23016938 DOI: 10.1111/j.1525-142x.2011.00510.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterochrony, altered developmental timing between ancestors and their descendents, has been proposed as a pervasive evolutionary feature and recent analytical approaches have confirmed its existence as an evolutionary pattern. Yet, the mechanistic basis for heterochrony remains unclear and, in particular, whether intraspecific variation in the timing of developmental events generates, or has the potential to generate, future between-species differences. Here we make a key step in linking heterochrony at the inter- and intraspecific level by reporting an association between interindividual variation in both the absolute and relative timing (position within the sequence of developmental events) of key embryonic developmental events and genetic distance for the pond snail, Radix balthica. We report significant differences in the genetic distance of individuals exhibiting different levels of dissimilarity in their absolute and relative timing of developmental events such as spinning activity, eyespot formation, heart ontogeny, and hatching. This relationship between genetic and developmental dissimilarity is consistent with there being a genetic basis for variation in developmental timing and so suggests that intraspecific heterochrony could provide the raw material for natural selection to produce speciation.
Collapse
Affiliation(s)
- Oliver Tills
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Bavis RW, Fallon SC, Dmitrieff EF. Chronic hyperoxia and the development of the carotid body. Respir Physiol Neurobiol 2013; 185:94-104. [PMID: 22640932 PMCID: PMC3448014 DOI: 10.1016/j.resp.2012.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 01/27/2023]
Abstract
Preterm infants often experience hyperoxia while receiving supplemental oxygen. Prolonged exposure to hyperoxia during development is associated with pathologies such as bronchopulmonary dysplasia and retinopathy of prematurity. Over the last 25 years, however, experiments with animal models have revealed that moderate exposures to hyperoxia (e.g., 30-60% O(2) for days to weeks) can also have profound effects on the developing respiratory control system that may lead to hypoventilation and diminished responses to acute hypoxia. This plasticity, which is generally inducible only during critical periods of development, has a complex time course that includes both transient and permanent respiratory deficits. Although the molecular mechanisms of hyperoxia-induced plasticity are only beginning to be elucidated, it is clear that many of the respiratory effects are linked to abnormal morphological and functional development of the carotid body, the principal site of arterial O(2) chemoreception for respiratory control. Specifically, developmental hyperoxia reduces carotid body size, decreases the number of chemoafferent neurons, and (at least transiently) diminishes the O(2) sensitivity of individual carotid body glomus cells. Recent evidence suggests that hyperoxia may also directly or indirectly impact development of the central neural control of breathing. Collectively, these findings emphasize the vulnerability of the developing respiratory control system to environmental perturbations.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | |
Collapse
|
15
|
Bitterli TS, Rundle SD, Spicer JI. Development of cardiovascular function in the marine gastropod Littorina obtusata (Linnaeus). J Exp Biol 2012; 215:2327-33. [DOI: 10.1242/jeb.067967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The molluscan cardiovascular system typically incorporates a transient extracardiac structure, the larval heart, early in development, but the functional importance of this structure is unclear. We documented the ontogeny and regulatory ability of the larval heart in relation to two other circulatory structures, the true heart and the velum, in the intertidal gastropod Littorina obtusata. There was a mismatch between the appearance of the larval heart and the velum. Velar lobes appeared early in development (day 4), but the larval heart did not begin beating until day 13. The beating of the larval heart reached a maximum on day 17 and then decreased until the structure itself disappeared (day 24). The true heart began to beat on day 17. Its rate of beating increased as that of the larval heart decreased, possibly suggesting a gradual shift from a larval heart-driven to a true heart-driven circulation. The true heart was not sensitive to acutely declining PO2 shortly after it began to beat, but increased in activity in response to acutely declining PO2 by day 21. Larval heart responses were similar to those of the true heart, with early insensitivity to declining PO2 (day 13) followed by a response by day 15. Increased velum-driven rotational activity under acutely declining PO2 was greatest in early developmental stages. Together, these findings point to cardiovascular function in L. obtusata larvae being the result of a complex interaction between velum, larval and true heart activities, with the functions of the three structures coinciding but their relative importance changing throughout larval development.
Collapse
Affiliation(s)
- Tabitha S. Bitterli
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Simon D. Rundle
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Orgeig S, Morrison JL, Daniels CB. Prenatal development of the pulmonary surfactant system and the influence of hypoxia. Respir Physiol Neurobiol 2011; 178:129-45. [DOI: 10.1016/j.resp.2011.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/10/2023]
|
17
|
Spicer JI, Rundle SD, Tills O. Studying the altered timing of physiological events during development: It's about time…or is it? Respir Physiol Neurobiol 2011; 178:3-12. [DOI: 10.1016/j.resp.2011.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 11/26/2022]
|
18
|
Ho DH, Reed WL, Burggren WW. Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. ACTA ACUST UNITED AC 2011; 214:619-28. [PMID: 21270311 DOI: 10.1242/jeb.046714] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal effects are important in epigenetic determination of offspring phenotypes during all life stages. In the chicken (Gallus gallus domesticus), transgenerational transfer of egg yolk factors may set the stage for morphological and physiological phenotypic differences observed among breeds. To investigate the effect of breed-specific yolk composition on embryonic broiler and layer chicken phenotypes, we employed an ex ovo, xenobiotic technique that allowed the transfer of broiler and layer chicken embryos from their natural yolks to novel yolk environments. Embryonic day two broiler embryos developing on broiler yolk culture medium (YCM) had significantly higher heart rates than layer embryos developing on layer YCM (176±7 beats min(-1) and 147±7 beats min(-1), respectively). Broiler embryos developing on layer YCM exhibited heart rates typical of layer embryos developing normally on layer YCM. However, layer embryo heart rates were not affected by development on broiler YCM. Unlike O(2) consumption, development rate and body mass of embryos were significantly affected by exposure to different yolk types, with both broiler and layer embryos displaying traits that reflected yolk source rather than embryo genotype. Analysis of hormone concentrations of broiler and layer egg yolks revealed that testosterone concentrations were higher in broiler yolk (4.63±2.02 pg mg(-1) vs 3.32±1.92 pg mg(-1)), whereas triiodothyronine concentrations were higher in layer yolk (1.05±0.18 pg mg(-1) vs 0.46±0.22 pg mg(-1)). Thus, a complex synergistic effect of breed-specific genotype and yolk environment exists early in chicken development, with yolk thyroid hormone and yolk testosterone as potential mediators of the physiological and morphological effects.
Collapse
Affiliation(s)
- Dao H Ho
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | | | | |
Collapse
|
19
|
Burggren WW, Reyna KS. Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 2011; 178:13-21. [PMID: 21596160 DOI: 10.1016/j.resp.2011.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 02/07/2023]
Abstract
Embryo-environment interactions affecting cardio-respiratory development in vertebrates have been extensively studied, but an equally extensive conceptual framework for interpreting and interrelating these developmental events has lagged behind. In this review, we consider the conceptual constructs of "developmental plasticity", "critical windows", "developmental trajectory" and related concepts as they apply to both vertebrate and invertebrate development. Developmental plasticity and the related phenomenon of "heterokairy" are considered as a subset of phenotypic plasticity, and examples of cardiovascular, respiratory and metabolic plasticity illustrate the variable outcomes of embryo-environment interactions. The concept of the critical window is revealed to be overarching in cardio-respiratory development, and events originating within a critical window, potentially mitigated by "self-repair" capabilities of the embryo, are shown to result in modified developmental trajectories and, ultimately, modified adult phenotype. Finally, epigenetics, fetal programming and related phenomena are considered in the context of potentially life-long cardio-respiratory phenotypic modification resulting from embryo-environment interactions.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
20
|
Warkentin KM. Environmentally Cued Hatching across Taxa: Embryos Respond to Risk and Opportunity. Integr Comp Biol 2011; 51:14-25. [DOI: 10.1093/icb/icr017] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Podrabsky JE, Garrett IDF, Kohl ZF. Alternative developmental pathways associated with diapause regulated by temperature and maternal influences in embryos of the annual killifish Austrofundulus limnaeus. J Exp Biol 2010; 213:3280-8. [PMID: 20833920 PMCID: PMC2936969 DOI: 10.1242/jeb.045906] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
Abstract
Embryos of the annual killifish Austrofundulus limnaeus enter a state of developmental arrest termed diapause as part of their normal developmental program. Diapause can occur at two distinct developmental stages in this species, termed diapause II and III. When incubated at 25°C, most embryos enter diapause II, whereas a small percentage of 'escape' embryos develop continuously past diapause II and enter diapause III. Control of entry into diapause II can be altered by maternal influences and the incubation environment experienced by the embryos. Young females produce a higher proportion of escape embryos than do older females. In addition, increasing the incubation temperature from 25 to 30°C induces all embryos to escape from diapause. Surprisingly, escape embryos follow a different morphological and physiological developmental trajectory than do embryos that enter diapause II. Development of anterior structures is advanced compared with that of posterior structures in escape embryos when compared with embryos that will enter diapause II. The difference in timing of development for these two trajectories is consistent with changes observed between two species but is very atypical of variation observed within a species. Importantly, the two developmental pathways diverge early in development, during the segmentation period, when, according to evolutionary theory, constraint on developmental pathways should be relatively high. The possession of alternative developmental pathways in a vertebrate embryo is a novel finding, the ecological and evolutionary importance of which is still unknown, but potentially significant in terms of life-history evolution.
Collapse
Affiliation(s)
- Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207-0751, USA.
| | | | | |
Collapse
|
22
|
Rundle SD, Smirthwaite JJ, Colbert MW, Spicer JI. Predator cues alter the timing of developmental events in gastropod embryos. Biol Lett 2010; 7:285-7. [PMID: 20880860 DOI: 10.1098/rsbl.2010.0658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterochrony, differences in the timing of developmental events between descendent species and their ancestors, is a pervasive evolutionary pattern. However, the origins of such timing changes are still not resolved. Here we show, using sequence analysis, that exposure to predator cues altered the timing of onset of several developmental events in embryos of two closely related gastropod species: Radix balthica and Radix auricularia. These timing alterations were limited to certain events and were species-specific. Compared with controls, over half (62%) of exposed R. auricularia embryos had a later onset of body flexing and an earlier occurrence of the eyes and the heart; in R. balthica, 67 per cent of exposed embryos showed a later occurrence of mantle muscle flexing and an earlier attachment to, and crawling on, the egg capsule wall. The resultant developmental sequences in treated embryos converged, and were more similar to one another than were the sequences of the controls for both species. We conclude that biotic agents can elicit altered event timing in developing gastropod embryos. These changes were species-specific, but did not occur in all individuals. Such developmental plasticity in the timing of developmental events could be an important step in generating interspecific heterochrony.
Collapse
Affiliation(s)
- Simon D Rundle
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Plymouth, UK.
| | | | | | | |
Collapse
|
23
|
Bavis RW, Young KM, Barry KJ, Boller MR, Kim E, Klein PM, Ovrutsky AR, Rampersad DA. Chronic hyperoxia alters the early and late phases of the hypoxic ventilatory response in neonatal rats. J Appl Physiol (1985) 2010; 109:796-803. [PMID: 20576840 DOI: 10.1152/japplphysiol.00510.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hyperoxia during the first 1-4 postnatal weeks attenuates the hypoxic ventilatory response (HVR) subsequently measured in adult rats. Rather than focusing on this long-lasting plasticity, the present study considered the influence of hyperoxia on respiratory control during the neonatal period. Sprague-Dawley rats were born and raised in 60% O2 until studied at postnatal ages (P) of 4, 6-7, or 13-14 days. Ventilation and metabolism were measured in normoxia (21% O2) and acute hypoxia (12% O2) using head-body plethysmography and respirometry, respectively. Compared with age-matched rats raised in room air, the major findings were 1) diminished pulmonary ventilation and metabolic O2 consumption in normoxia at P4 and P6-7; 2) decreased breathing stability during normoxia; 3) attenuation of the early phase of the HVR at P6-7 and P13-14; and 4) a sustained increase in ventilation during hypoxia (vs. the normal biphasic HVR) at all ages studied. Attenuation of the early HVR likely reflects progressive impairment of peripheral arterial chemoreceptors while expression of a sustained HVR in neonates before P7 suggests that hyperoxia also induces plasticity within the central nervous system. Together, these results suggest a complex interaction between inhibitory and excitatory effects of hyperoxia on the developing respiratory control system.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mourabit S, Rundle SD, Spicer JI, Sloman KA. Alarm substance from adult zebrafish alters early embryonic development in offspring. Biol Lett 2010; 6:525-8. [PMID: 20071391 DOI: 10.1098/rsbl.2009.0944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alarm substances elicit behavioural responses in a wide range of animals but effects on early embryonic development are virtually unknown. Here we investigated whether skin injury-induced alarm substances caused physiological responses in embryos produced by two Danio species (Danio rerio and Danio albolineatus). Both species showed more rapid physiological development in the presence of alarm substance, although there were subtle differences between them: D. rerio had advanced muscle contraction and heart function, whereas D. albolineatus had advanced heart function only. Hence, alarm cues from injured or dying fish may be of benefit to their offspring, inducing physiological responses and potentially increasing their inclusive fitness.
Collapse
Affiliation(s)
- S Mourabit
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Plymouth, UK
| | | | | | | |
Collapse
|
25
|
Dzialowski EM. Introduction to the symposium on developmental transitions in respiratory physiology. Comp Biochem Physiol A Mol Integr Physiol 2007. [DOI: 10.1016/j.cbpa.2007.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|