1
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
3
|
Schmidt P, Vogel A, Schwarze B, Seufert F, Licha K, Wycisk V, Kilian W, Hildebrand PW, Mitschang L. Towards Probing Conformational States of Y2 Receptor Using Hyperpolarized 129Xe NMR. Molecules 2023; 28:molecules28031424. [PMID: 36771089 PMCID: PMC9919357 DOI: 10.3390/molecules28031424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor-cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Benedikt Schwarze
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Virginia Wycisk
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
- Correspondence:
| |
Collapse
|
4
|
Doll M, Berthault P, Léonce E, Boutin C, Jeanneau E, Brotin T, De Rycke N. Study of syn and anti Xenon-Cryptophanes Complexes Decorated with Aromatic Amine Groups: Chemical Platforms for Accessing New Cryptophanes. J Org Chem 2022; 87:2912-2920. [PMID: 35080182 DOI: 10.1021/acs.joc.1c02774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of C3-symmetric cryptophanes decorated with three aromatic amine groups on the same CTB cap and their interaction with xenon. The relative stereochemistry of these two stereoisomers syn and anti was assessed thanks to the determination of the X-ray structure of an intermediate compound. As previously observed with the tris-aza-cryptophanes analogs anti-1 and syn-2 (J. Org. Chem. 2021, 86, 11, 7648-7658), both compounds anti-5 and syn-6 show a slow in-out exchange dynamics of xenon at 11.7 T. Our work supports the idea that the presence of nitrogen atoms grafted directly onto the cryptophane backbone has a strong impact on the in-out exchange dynamics of xenon whatever their stereochemistry. This result contrasts with the case of other cryptophanes decorated solely with methoxy substituents. Finally, we demonstrate that these new derivatives can be used to design new anti/syn cryptophanes bearing suitable ligands in order to constitute potent 129Xe NMR-based sensors. An example is reported here with the synthesis of the tris-iodo derivatives anti-13 and syn-14 from compounds anti-5 and syn-6.
Collapse
Affiliation(s)
- Martin Doll
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon 1, 5 rue la Doua, 69100 Villeurbanne, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Nicolas De Rycke
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| |
Collapse
|
5
|
Zeng Q, Guo Q, Yuan Y, Wang B, Sui M, Lou X, Bouchard LS, Zhou X. Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations. iScience 2021; 24:103515. [PMID: 34934931 PMCID: PMC8661548 DOI: 10.1016/j.isci.2021.103515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides structural and functional information, but it did not probe chemistry. Chemical information could help improve specificity of detection. Herein, we introduce a general method based on a modular design to construct a molecular building block Xe probe to help image intracellular biothiols (glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)), the abnormal content of which is related to various diseases. This molecular building block possesses a high signal-to-noise ratio and no background signal effects. Its detection threshold was 100 pM, which enabled detection of intracellular biothiols in live cells. The construction strategy can be easily extended to the detection of any other biomolecule or biomarker. This modular design strategy promotes efficiency of development of low-cost multifunctional probes that can be combined with other readout parameters, such as optical readouts, to complement 129Xe MRI to usher in new capabilities for molecular imaging.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Meiju Sui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Louis-S. Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles 90095, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
7
|
Doll M, Berthault P, Léonce E, Boutin C, Buffeteau T, Daugey N, Vanthuyne N, Jean M, Brotin T, De Rycke N. Are the Physical Properties of Xe@Cryptophane Complexes Easily Predictable? The Case of syn- and anti-Tris-aza-Cryptophanes. J Org Chem 2021; 86:7648-7658. [PMID: 34033483 DOI: 10.1021/acs.joc.1c00701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis and optical resolution of C3-symmetrical tris-aza-cryptophanes anti-3 and syn-4, as well as the study of their interaction with xenon via hyperpolarized 129Xe NMR. These molecular cages are close structural analogues of the two well-known cryptophane-A (1; chiral) and cryptophane-B (2; achiral) diastereomers since these new compounds differ only by the presence of three nitrogen atoms grafted onto the same cyclotribenzylene unit. The assignment of their relative (syn vs anti) and absolute configurations was made possible, thanks to the combined use of quantum calculations at the density functional theory level and vibrational circular dichroism spectroscopy. More importantly, our results show that despite the large structural similarities with cryptophane-A (1) and -B (2), these two new compounds show a very different behavior in the presence of xenon in organic solutions. These results demonstrate that prediction of the physical properties of the xenon@cryptophane complexes, only based on structural parameters, remains extremely difficult.
Collapse
Affiliation(s)
- Martin Doll
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| | - Patrick Berthault
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires (UMR 5255-Université-CNRS), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Nicolas Daugey
- Institut des Sciences Moléculaires (UMR 5255-Université-CNRS), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Marion Jean
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| | - Nicolas De Rycke
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| |
Collapse
|
8
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
9
|
Baydoun O, De Rycke N, Léonce E, Boutin C, Berthault P, Jeanneau E, Brotin T. Synthesis of Cryptophane-223-Type Derivatives with Dual Functionalization. J Org Chem 2019; 84:9127-9137. [DOI: 10.1021/acs.joc.9b01093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Orsola Baydoun
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Nicolas De Rycke
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Thierry Brotin
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
10
|
Baydoun O, Buffeteau T, Daugey N, Jean M, Vanthuyne N, Chapellet LL, De Rycke N, Brotin T. Chiroptical study of cryptophanes subjected to self-encapsulation. Chirality 2019; 31:481-491. [PMID: 31134692 DOI: 10.1002/chir.23079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
In 1,1,2,2-tetrachloroethane-d2 , the 129 Xe NMR spectrum of the Xe@cryptophane-223 complex bearing seven acetate groups (Xe@1 complex) shows an unusually broad signal compared with that of its congeners (Chapellet, LL. et al. J. Org. Chem. 2015;80:6143-6151). To interpret this unexpected behaviour, a 1 H NMR analysis and a thorough study of the chiroptical properties of 1 as a function of the nature of the solvent have been performed. The 1 H NMR spectra of 1 reveal that a self-encapsulation phenomenon takes place in DMSO-d6 and 1,1,2,2-tetrachloroethane-d2 solvents. Thanks to the separation of the two enantiomers of 1 by HPLC on chiral stationary phase, the two enantiomers of 1 have been studied in detail by polarimetry, electronic (ECD), and vibrational (VCD) circular dichroism spectroscopies. Except for ECD spectroscopy, these chiroptical techniques reveal spectroscopic changes as a function of the nature of the solvent. For instance, in DMSO and 1,1,2,2-tetrachloroethane, in which the self-encapsulation phenomenon takes place, the sign of the specific optical rotation of [CD(-)254 ]-1 and [CD(+)254 ]-1 is changed. These results have then been compared with those obtained with cryptophane-223 bearing only one acetate group on the propylenedioxy linker (compound 2) and with cryptophane-223 bearing six acetate groups (compound 3). A self-encapsulation phenomenon is also observed with compound 2. Finally, compounds 2 and 3 show different chiroptical properties compared with those obtained with the two enantiomers of compound 1.
Collapse
Affiliation(s)
- Orsola Baydoun
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, Lyon, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, Bordeaux University, CNRS UMR 5255, Talence, France
| | - Nicolas Daugey
- Institut des Sciences Moléculaires, Bordeaux University, CNRS UMR 5255, Talence, France
| | - Marion Jean
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Laure-Lise Chapellet
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, Lyon, France
| | - Nicolas De Rycke
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, Lyon, France
| | - Thierry Brotin
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, Lyon, France
| |
Collapse
|
11
|
Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice. Pol J Radiol 2019; 84:e147-e152. [PMID: 31019609 PMCID: PMC6479148 DOI: 10.5114/pjr.2019.84242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
The work describes the physical basis of the chemical exchange saturation transfer (CEST) technique; it presents the beginnings of the implementation of the method and its possible applications. The principles of correct data acquisition and possible solutions used during the design of the CEST sequence are shown. The main problems related to data analysis are indicated, and an example Z-spectrum from in vivo study of the rat brain is introduced. Furthermore, the parameters related to spectrum analyses such as magnetisation transfer asymmetry (MTRasym) and amide proton transfer asymmetry (APTasym) are presented. In the following part, different types of the CEST method often mentioned in the literature are discussed. Subsequently, the possible applications of the CEST method in both clinical and experimental practice are described.
Collapse
|
12
|
Zhang B, Guo Q, Luo Q, Zhang X, Zeng Q, Zhao L, Yuan Y, Jiang W, Yang Y, Liu M, Ye C, Zhou X. An intracellular diamine oxidase triggered hyperpolarized 129Xe magnetic resonance biosensor. Chem Commun (Camb) 2018; 54:13654-13657. [PMID: 30398489 DOI: 10.1039/c8cc07822j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, a novel method was developed for suppressing 129Xe signals in cucurbit[6]uril (CB6) until the trigger is activated by a specific enzyme. Due to its noncovalent interactions with amino-groups and CB6, putrescine dihydrochloride (Put) was chosen for blocking interactions between 129Xe and CB6. Upon adding diamine oxidase (DAO), Put was released from CB6 and a 129Xe@CB6 Hyper-CEST signal emerged. This proposed 129Xe biosensor was then tested in small intestinal villus epithelial cells.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jayapaul J, Schröder L. Complete Generation of a 129Xe Biosensor on the Solid Support by Systematic Backbone Assembly. Bioconjug Chem 2018; 29:4004-4011. [PMID: 30428668 DOI: 10.1021/acs.bioconjchem.8b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Xenon biosensors are an emerging tool for different molecular imaging approaches. For many applications, their development requires peptide synthesis steps, followed by the selective installation of a xenon host onto the peptide backbone in solution. In this study, three different strategies were attempted for generating entire Xe biosensors on the solid support. Notably, one strategy involving CryA-da was beneficial by directly integrating this host into the growing construct on a low loaded resin via modification of the administered subcomponent equivalents and by prolonging the coupling procedure. Subsequently, installation of additional amino acids or of additional labels onto the growing construct was achieved by a procedure in which an excess amine was administered to the activated CryA-da (acid) anchored onto the resin. Further, the as-generated Xe biosensor was tested for its NMR and MRI capabilities in H2O and compared to the performance of CryA-ma. Xe NMR of the biosensor indicated a clear CEST response and the Xe MR images revealed similar contrast compared to the reference host. These observations suggest that functionalizing CryA-da on both sides with multiple labels did not alter significantly its NMR capabilities. Hereby, we could show the successful and complete synthesis of a CryA-da-based xenon biosensor on the solid support without any notable side reactions and without the necessity of multiple purification steps.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany
| |
Collapse
|
14
|
Brotin T, Jeanneau E, Berthault P, Léonce E, Pitrat D, Mulatier JC. Synthesis of Cryptophane-B: Crystal Structure and Study of Its Complex with Xenon. J Org Chem 2018; 83:14465-14471. [DOI: 10.1021/acs.joc.8b02246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thierry Brotin
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université Lyon 1, 5 rue de la Doua, Villeurbanne 69100, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Delphine Pitrat
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, 46 allée d’Italie, Lyon F69364, France
| |
Collapse
|
15
|
Schnurr M, Joseph R, Naugolny-Keisar A, Kaizerman-Kane D, Bogdanoff N, Schuenke P, Cohen Y, Schröder L. High Exchange Rate Complexes of 129 Xe with Water-Soluble Pillar[5]arenes for Adjustable Magnetization Transfer MRI. Chemphyschem 2018; 20:246-251. [PMID: 30079552 DOI: 10.1002/cphc.201800618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 01/16/2023]
Abstract
Macrocyclic host structures for generating transiently bound 129 Xe have been used in various ultra-sensitive NMR and MRI applications for molecular sensing of biochemical analytes. They are based on hyperpolarized nuclei chemical exchange saturation transfer (Hyper-CEST). Here, we tested a set of water-soluble pillar[5]arenes with different counterions in order to compare their potential contrast agent abilities with that of cryptophane-A (CrA), the most widely used host for such purposes. The exchange of Xe with such compounds was found to be sensitive to the type of ions present in solution and can be used for switchable magnetization transfer (MT) contrast that arises from off-resonant pre-saturation. We demonstrate that the adjustable MT magnitude depends on the interplay of saturation parameters and found that the optimum MT contrast surpasses the CrA CEST performance at moderate saturation power. Since modification of such water-soluble pillar[5]arenes is straightforward, these compounds can be considered a promising platform for designing various sensors that may complement the field of Xe HyperCEST-based biosensing MRI.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Roymon Joseph
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Alissa Naugolny-Keisar
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Nils Bogdanoff
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Patrick Schuenke
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
16
|
Zemerov SD, Roose BW, Greenberg ML, Wang Y, Dmochowski IJ. Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing. Anal Chem 2018; 90:7730-7738. [PMID: 29782149 PMCID: PMC6050516 DOI: 10.1021/acs.analchem.8b01630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | | | | | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| |
Collapse
|
17
|
Korchak S, Riemer T, Kilian W, Mitschang L. Quantitative Assessment of Xenon Exchange Kinetics with Cucurbit[6]uril in Physiological Saline. Chemphyschem 2018; 19:1859-1865. [PMID: 29855138 DOI: 10.1002/cphc.201800048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/10/2022]
Abstract
Cucurbit[6]uril and xenon form supramolecular complexes that are of great potential for biosensing by NMR. This host-guest system acts alike a signaler in sensors facilitating the ultrasensitive detection of biomarkers by saturation transfer of chemically exchanging, hyperpolarized 129 Xe. Here, the exchange process is evaluated by NMR exchange spectroscopy utilizing the preparation of anti-parallel longitudinal magnetization with respect to free and host-bound xenon and the variation of xenon concentration. Evidence for dissociative as well as degenerate exchange mechanisms is revealed by a linear regression analysis of the determined exchange rates resulting in rate coefficients of 1131±11 s-1 (2390±70 s-1 ) and 108500±4900 M-1 s-1 (174200±13900 M-1 s-1 ), respectively, and an affinity constant of 289±8 M-1 (278±14 M-1 ) in physiological saline at 298 K (310 K). The results elucidate the supramolecular exchange and underpin the high efficacy for biosensing of this host-guest system. The approach is generally applicable to enhanced host-xenon exchange dynamics, yet slow on the NMR timescale, for quantitative kinetics and biosensing analyses.
Collapse
Affiliation(s)
- Sergey Korchak
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
- Present address: Max Planck Research Group NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Riemer
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
18
|
Lu GJ, Farhadi A, Szablowski JO, Lee-Gosselin A, Barnes SR, Lakshmanan A, Bourdeau RW, Shapiro MG. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. NATURE MATERIALS 2018; 17:456-463. [PMID: 29483636 PMCID: PMC6015773 DOI: 10.1038/s41563-018-0023-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/17/2018] [Indexed: 05/11/2023]
Abstract
Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
Collapse
Affiliation(s)
- George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Anupama Lakshmanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Raymond W Bourdeau
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
19
|
Korchak S, Riemer T, Kilian W, Mitschang L. Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe. Phys Chem Chem Phys 2018; 20:1800-1808. [DOI: 10.1039/c7cp07051a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative modeling and evaluation of biosensor detection by hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST).
Collapse
Affiliation(s)
- S. Korchak
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| | - T. Riemer
- University of Leipzig
- Medical Department
- Institute of Medical Physics and Biophysics
- 04107 Leipzig
- Germany
| | - W. Kilian
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| | - L. Mitschang
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| |
Collapse
|
20
|
Demissie TB, Ruud K, Hansen JH. Cryptophanes for Methane and Xenon Encapsulation: A Comparative Density Functional Theory Study of Binding Properties and NMR Chemical Shifts. J Phys Chem A 2017; 121:9669-9677. [PMID: 29178799 DOI: 10.1021/acs.jpca.7b10595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The host-guest chemistry of cryptophanes is an active research area because of its applications in sensor design, targeting small molecules and atoms in environmental and medical sciences. As such, the computational prediction of binding energies and nuclear magnetic resonance (NMR) properties of different cryptophane complexes are of interest to both theoreticians and experimentalists working in host-guest based sensor development. Herein we present a study of 10 known and some newly proposed cryptophanes using density functional theory (DFT) calculations. We benchmark the description of nonbonding interactions by different DFT functionals against spin-component-scaled, second-order Møller-Plesset theory (SCS-MP2) and predict novel host molecules with enhanced affinity toward methane and Xenon, two representative systems of high interest. We demonstrate the power and limitations of the different computational methods in describing the binding and NMR properties of these established and novel host systems. The results show the importance of including dispersion corrections in the DFT functionals. The overall analysis of the dispersion corrections indicated that results obtained from pure DFT functionals should be used cautiously when conclusions are drawn for molecular systems with considerable weak interactions. Proposed analogues of cryptophane-A, where the alkoxy bridges are replaced by alkyl chains, are predicted to display enhanced affinity toward both methane and Xenon.
Collapse
Affiliation(s)
- Taye B Demissie
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway.,Organic Chemistry Group, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| | - Jørn H Hansen
- Organic Chemistry Group, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
21
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
22
|
Abstract
![]()
Molecular imaging holds considerable promise for elucidating biological
processes in normal physiology as well as disease states, by determining
the location and relative concentration of specific molecules of interest.
Proton-based magnetic resonance imaging (1H MRI) is nonionizing
and provides good spatial resolution for clinical imaging but lacks
sensitivity for imaging low-abundance (i.e., submicromolar) molecular
markers of disease or environments with low proton densities. To address
these limitations, hyperpolarized (hp) 129Xe NMR spectroscopy
and MRI have emerged as attractive complementary methodologies. Hyperpolarized
xenon is nontoxic and can be readily delivered to patients via inhalation
or injection, and improved xenon hyperpolarization technology makes
it feasible to image the lungs and brain for clinical applications. In order to target hp 129Xe to biomolecular targets
of interest, the concept of “xenon biosensing” was first
proposed by a Berkeley team in 2001. The development of xenon biosensors
has since focused on modifying organic host molecules (e.g., cryptophanes)
via diverse conjugation chemistries and has brought about numerous
sensing applications including the detection of peptides, proteins,
oligonucleotides, metal ions, chemical modifications, and enzyme activity.
Moreover, the large (∼300 ppm) chemical shift window for hp 129Xe bound to host molecules in water makes possible the simultaneous
identification of multiple species in solution, that is, multiplexing.
Beyond hyperpolarization, a 106-fold signal enhancement
can be achieved through a technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST), which shows
great potential to meet the sensitivity requirement in many applications. This Account highlights an expanded palette of hyper-CEST biosensors,
which now includes cryptophane and cucurbit[6]uril (CB[6]) small-molecule
hosts, as well as genetically encoded gas vesicles and single proteins.
In 2015, we reported picomolar detection of commercially available
CB[6] via hyper-CEST. Inspired by the versatile host–guest
chemistry of CB[6], our lab and others developed “turn-on”
strategies for CB[6]-hyper-CEST biosensing, demonstrating detection
of protein analytes in complex media and specific chemical events.
CB[6] is starting to be employed for in vivo imaging
applications. We also recently determined that TEM-1 β-lactamase
can function as a single-protein reporter for hyper-CEST and observed
useful saturation contrast for β-lactamase expressed in bacterial
and mammalian cells. These newly developed small-molecule and genetically
encoded xenon biosensors offer significant potential to extend the
scope of hp 129Xe toward molecular MRI.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Abstract
UNLABELLED Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this "molecular fMRI" approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques.
Collapse
|
24
|
Jeong K, Netirojjanakul C, Munch HK, Sun J, Finbloom JA, Wemmer DE, Pines A, Francis MB. Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR. Bioconjug Chem 2016; 27:1796-801. [PMID: 27454679 DOI: 10.1021/acs.bioconjchem.6b00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.
Collapse
Affiliation(s)
- Keunhong Jeong
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Chawita Netirojjanakul
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Henrik K Munch
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Jinny Sun
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Joel A Finbloom
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - David E Wemmer
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Alexander Pines
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| | - Matthew B Francis
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division and §Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-1460, United States
| |
Collapse
|
25
|
Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ. A Genetically Encoded β-Lactamase Reporter for Ultrasensitive (129) Xe NMR in Mammalian Cells. Angew Chem Int Ed Engl 2016; 55:8984-7. [PMID: 27305488 DOI: 10.1002/anie.201604055] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/20/2016] [Indexed: 01/27/2023]
Abstract
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub-micromolar concentrations. Particularly useful are genetically encoded, single-protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM-1 β-lactamase (bla) as a single-protein reporter for hyperpolarized (HP) (129) Xe NMR, with significant saturation contrast at 0.1 μm. Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the (129) Xe-H2 O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Eugene J Palovcak
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA.
| |
Collapse
|
26
|
Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ. A Genetically Encoded β-Lactamase Reporter for Ultrasensitive129Xe NMR in Mammalian Cells. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanfei Wang
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Benjamin W. Roose
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Eugene J. Palovcak
- Institute for Computational Molecular Science, College of Science and Technology; Temple University; 1925 N. 12th Street Philadelphia PA 19122 USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology; Temple University; 1925 N. 12th Street Philadelphia PA 19122 USA
| | - Ivan J. Dmochowski
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
27
|
Korchak S, Kilian W, Schröder L, Mitschang L. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:139-145. [PMID: 26896869 DOI: 10.1016/j.jmr.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.
Collapse
Affiliation(s)
- Sergey Korchak
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany
| | - Leif Schröder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany.
| |
Collapse
|
28
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 33:63-85. [PMID: 27081214 PMCID: PMC4829385 DOI: 10.14356/kona.2016014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
29
|
Payne RM, Oliver CL. Single-crystal-to-single-crystal transformation of the desolvation of a cyclotriveratrylene–acetonitrile inclusion complex via a gating mechanism with subsequent polymorphism. CrystEngComm 2016. [DOI: 10.1039/c6ce01078d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Gao L, Liu W, Lee OS, Dmochowski IJ, Saven JG. Xe affinities of water-soluble cryptophanes and the role of confined water. Chem Sci 2015; 6:7238-7248. [PMID: 29861959 PMCID: PMC5950801 DOI: 10.1039/c5sc02401c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022] Open
Abstract
Simulations provide molecular insight on the aqueous binding of Xe to cryptophanes.
Given their relevance to drug design and chemical sensing, host–guest interactions are of broad interest in molecular science. Natural and synthetic host molecules provide vehicles for understanding selective molecular recognition in aqueous solution. Here, cryptophane–Xe host–guest systems are considered in aqueous media as a model molecular system that also has important applications. 129Xe–cryptophane systems can be used in the creation of biosensors and powerful contrast agents for magnetic resonance imaging applications. Detailed molecular information on the determinants of Xe affinity is difficult to obtain experimentally. Thus, molecular simulation and free energy perturbation methods were applied to estimate the affinities of Xe for six water-soluble cryptophanes. The calculated affinities correlated well with the previously measured experimental values. The simulations provided molecular insight on the differences in affinities and the roles of conformational fluctuations, solvent, and counter ions on Xe binding to these host molecules. Displacement of confined water from the host interior cavity is a key component of the binding equilibrium, and the average number of water molecules within the host cavity is correlated with the free energy of Xe binding to the different cryptophanes. The findings highlight roles for molecular simulation and design in modulating the relative strengths of host–guest and host–solvent interactions.
Collapse
Affiliation(s)
- Lu Gao
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - Wenhao Liu
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - One-Sun Lee
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Qatar Foundation , Doha , Qatar
| | - Ivan J Dmochowski
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - Jeffery G Saven
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| |
Collapse
|
31
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|
32
|
Zamberlan F, Lesbats C, Rogers NJ, Krupa JL, Pavlovskaya GE, Thomas NR, Faas HM, Meersmann T. Molecular Sensing with Hyperpolarized129Xe Using Switchable Chemical Exchange Relaxation Transfer. Chemphyschem 2015; 16:2294-8. [DOI: 10.1002/cphc.201500367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022]
|
33
|
Schnurr M, Sydow K, Rose HM, Dathe M, Schröder L. Brain endothelial cell targeting via a peptide-functionalized liposomal carrier for xenon hyper-CEST MRI. Adv Healthc Mater 2015; 4:40-5. [PMID: 24985966 DOI: 10.1002/adhm.201400224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/02/2014] [Indexed: 12/17/2022]
Abstract
A nanoparticulate carrier system is used to efficiently deliver a contrast agent for highly sensitive xenon Hyper-CEST MRI. The carrier system not only improves the biocompatibility and solubility of the contrast agent, it also allows selective cell targeting as demonstrated by the discrimination of human brain capillary and aortic endothelial cells.
Collapse
Affiliation(s)
- Matthias Schnurr
- ERC Project BiosensorImaging; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Karl Sydow
- Peptide-Lipid Interaction; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Honor May Rose
- ERC Project BiosensorImaging; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Margitta Dathe
- Peptide-Lipid Interaction; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Leif Schröder
- ERC Project BiosensorImaging; Leibniz-Institut für Molekulare Pharmakologie; Robert-Rössle-Str. 10 13125 Berlin Germany
| |
Collapse
|
34
|
Korchak S, Kilian W, Mitschang L. Degeneracy in cryptophane–xenon complex formation in aqueous solution. Chem Commun (Camb) 2015; 51:1721-4. [DOI: 10.1039/c4cc08601e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degenerate exchange prevails in the cryptophane-A–xenon host–guest system in aqueous solution.
Collapse
Affiliation(s)
- Sergey Korchak
- Physikalisch-Technische Bundesanstalt
- Division of Medical Physics and Metrological Information Technology
- 10587 Berlin
- Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt
- Division of Medical Physics and Metrological Information Technology
- 10587 Berlin
- Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt
- Division of Medical Physics and Metrological Information Technology
- 10587 Berlin
- Germany
| |
Collapse
|
35
|
Senthilkumar B, Gonnade RG, Ramana CV. Pd-catalyzed benzylic C–H oxidation of cyclotriveratrylene – product diversity. Org Biomol Chem 2015; 13:2323-9. [DOI: 10.1039/c4ob02469a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inner-rim oxidation of CTV has been explored with palladium and an interesting array of CTV derivatives has been obtained by simple changes in the solvent/conditions employed.
Collapse
Affiliation(s)
- B. Senthilkumar
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - R. G. Gonnade
- Center for Material Characterization
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - C. V. Ramana
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
36
|
Rossella F, Rose HM, Witte C, Jayapaul J, Schröder L. Design and Characterization of Two Bifunctional Cryptophane A-Based Host Molecules for Xenon Magnetic Resonance Imaging Applications. Chempluschem 2014. [DOI: 10.1002/cplu.201402179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat Chem 2014; 6:629-34. [PMID: 24950334 DOI: 10.1038/nchem.1934] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 03/24/2014] [Indexed: 01/17/2023]
Abstract
Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional (1)H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized (129)Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for (1)H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.
Collapse
|
38
|
Taratula O, Bai Y, D'Antonio EL, Dmochowski IJ. Enantiopure Cryptophane- 129Xe Nuclear Magnetic Resonance Biosensors Targeting Carbonic Anhydrase. Supramol Chem 2014; 27:65-71. [PMID: 25506191 DOI: 10.1080/10610278.2014.906601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The (+) and (-) enantiomers for a cryptophane-7-bond-linker-benzenesulfonamide biosensor (C7B) were synthesized and their chirality confirmed by electronic circular dichroism (ECD) spectroscopy. Biosensor binding to carbonic anhydrase II (CAII) was characterized for both enantiomers by hyperpolarized (hp) 129Xe NMR spectroscopy. Our previous study of the racemic (+/-) C7B biosensor-CAII complex [Chambers, et al., J. Am. Chem. Soc. 2009, 131, 563-569], identified two "bound" 129Xe@C7B peaks by hp 129Xe NMR (at 71 and 67 ppm, relative to "free" biosensor at 64 ppm), which led to the initial hypothesis that (+) and (-) enantiomers produce diastereomeric peaks when coordinated to Zn2+ at the chiral CAII active site. Unexpectedly, the single enantiomers complexed with CAII also identified two "bound" 129Xe@C7B peaks: (+) 72, 68 ppm and (-) 68, 67 ppm. These results are consistent with X-ray crystallographic evidence for benzenesulfonamide inhibitors occupying a second site near the CAII surface. As illustrated by our studies of this model protein-ligand interaction, hp 129Xe NMR spectroscopy can be useful for identifying supramolecular assemblies in solution.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Yubin Bai
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Edward L D'Antonio
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| |
Collapse
|
39
|
Palaniappan KK, Francis MB, Pines A, Wemmer DE. Molecular Sensing Using Hyperpolarized Xenon NMR Spectroscopy. Isr J Chem 2014. [DOI: 10.1002/ijch.201300128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Adiri T, Marciano D, Cohen Y. Potential 129Xe-NMR biosensors based on secondary and tertiary complexes of a water-soluble pillar[5]arene derivative. Chem Commun (Camb) 2014; 49:7082-4. [PMID: 23811715 DOI: 10.1039/c3cc43253j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the first secondary and tertiary complexes of the pillar[5]arene derivative with xenon in water. We show that the chemical shift of the encapsulated xenon provides information on the type of the formed complex suggesting that has the potential to be used as a platform for NMR biosensors.
Collapse
Affiliation(s)
- Tal Adiri
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Joseph AI, El-Ayle G, Boutin C, Léonce E, Berthault P, Holman KT. Rim-functionalized cryptophane-111 derivatives via heterocapping, and their xenon complexes. Chem Commun (Camb) 2014; 50:15905-8. [DOI: 10.1039/c4cc08001g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rim-functionalization of cryptophane-111 narrows the achievable conformational range of the cage, resulting in unprecedentedly crowded Xe@cryptophane complexes.
Collapse
Affiliation(s)
- Akil I. Joseph
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| | - Gracia El-Ayle
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| | - Céline Boutin
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - Estelle Léonce
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - Patrick Berthault
- CEA
- IRAMIS
- NIMBE
- Laboratoire Structure et Dynamique par Résonance Magnétique
- UMR CEA/CNRS 3299
| | - K. Travis Holman
- Department of Chemistry
- Georgetown University
- Washington, USA 20057
| |
Collapse
|
42
|
Witte C, Schröder L. NMR of hyperpolarised probes. NMR IN BIOMEDICINE 2013; 26:788-802. [PMID: 23033215 DOI: 10.1002/nbm.2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Increasing the sensitivity of NMR experiments is an ongoing field of research to help realise the exquisite molecular specificity of this technique. Hyperpolarisation of various nuclei is a powerful approach that enables the use of NMR for molecular and cellular imaging. Substantial progress has been achieved over recent years in terms of both tracer preparation and detection schemes. This review summarises recent developments in probe design and optimised signal encoding, and promising results in sensitive disease detection and efficient therapeutic monitoring. The different methods have great potential to provide molecular specificity not available by other diagnostic modalities.
Collapse
Affiliation(s)
- Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
43
|
Nahar K, Gupta N, Gauvin R, Absar S, Patel B, Gupta V, Khademhosseini A, Ahsan F. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharm Sci 2013; 49:805-18. [PMID: 23797056 DOI: 10.1016/j.ejps.2013.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/03/2013] [Accepted: 06/07/2013] [Indexed: 01/14/2023]
Abstract
Delivery of therapeutic agents via the pulmonary route has gained significant attention over the past few decades because this route of administration offers multiple advantages over traditional routes that include localized action, non-invasive nature and favorable lung-to-plasma ratio. However, assessment of post administration behavior of inhaled pharmaceuticals-such as deposition of particles over the respiratory airways, interaction with the respiratory fluid and movement across the air-blood barrier-is challenging because the lung is a very complex organs that is composed of airways with thousands of bifurcations with variable diameters. Thus, much effort has been put forward to develop models that mimic human lungs and allow evaluation of various pharmaceutical and physiological factors that influence the deposition and absorption profiles of inhaled formulations. In this review, we sought to discuss in vitro, in vivo and ex vivo models that have been extensively used to study the behaviors of airborne particles in the lungs and determine the absorption of drugs after pulmonary administration. We have provided a summary of lung cast models, cascade impactors, noninvasive imaging, intact animals, cell culture and isolated perfused lung models as tools to evaluate the distribution and absorption of inhaled particles. We have also outlined the limitations of currently used models and proposed future studies to enhance the reproducibility of these models.
Collapse
Affiliation(s)
- Kamrun Nahar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Standara S, Kulhánek P, Marek R, Straka M. 129Xe NMR chemical shift in Xe@C60calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent. J Comput Chem 2013; 34:1890-8. [DOI: 10.1002/jcc.23334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
|
45
|
Selivanova NM, Galeeva AI, Sukhanov AA, Gnezdilov OI, Chachkov DV, Galyametdinov YG. N,N-dimethyldodecylamine oxide self-organization in the presence of lanthanide ions in aqueous and aqueous-decanol solutions. J Phys Chem B 2013; 117:5355-64. [PMID: 23557206 DOI: 10.1021/jp400875b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The article represents the results of research in self-organization of new lanthanide systems in water-decanol medium. The systems are based on N,N-dimethyldodecylamine oxide, a zwitterionic surfactant. The study covers the complex formation of lanthanide ions with C12DMAO molecules and the influence of Ln(III) ions and medium composition on surfactant association in diluted solutions. The analysis of adsorption isotherms was carried out on the basis of the combination of Gibbs and Langmuir adsorption equations. The results were used to determine physicochemical properties and parameters of a monomolecular adsorption layer. The research objects were various lanthanide ions with identical coordination centers. A number of spectroscopic methods (UV, NMR self-diffusion, EPR, dynamic light scattering (DLS), and fluorescent analysis) were involved in the research for comparative estimations of molecular dynamics, critical micellization concentration, geometry, sizes, and aggregation numbers of micellar aggregates. Micelle structure simulation revealed good agreement between experimental data and quantum chemical calculations.
Collapse
Affiliation(s)
- Natalia M Selivanova
- Kazan National Research Technological University, 68 Karl Marx, Kazan, Russia, 420015.
| | | | | | | | | | | |
Collapse
|
46
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
47
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl 2013; 52:4849-53. [PMID: 23554263 DOI: 10.1002/anie.201300170] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/09/2013] [Indexed: 02/02/2023]
|
48
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular Imaging of Cancer Cells Using a Bacteriophage-Based129Xe NMR Biosensor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Korchak SE, Kilian W, Mitschang L. Configuration and Performance of a Mobile (129)Xe Polarizer. APPLIED MAGNETIC RESONANCE 2013; 44:65-80. [PMID: 23349565 PMCID: PMC3549238 DOI: 10.1007/s00723-012-0425-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/17/2012] [Indexed: 05/03/2023]
Abstract
A stand-alone, self-contained and transportable system for the polarization of (129)Xe by spin exchange optical pumping with Rb is described. This mobile polarizer may be operated in batch or continuous flow modes with medium amounts of hyperpolarized (129)Xe for spectroscopic or small animal applications. A key element is an online nuclear magnetic resonance module which facilitates continuous monitoring of polarization generation in the pumping cell as well as the calculation of the absolute (129)Xe polarization. The performance of the polarizer with respect to the crucial parameters temperature, xenon and nitrogen partial pressures, and the total gas flow is discussed. In batch mode the highest (129)Xe polarization of P(Xe) = 40 % was achieved using 0.1 mbar xenon partial pressure. For a xenon flow of 6.5 and 26 mln/min, P(Xe) = 25 % and P(Xe) = 13 % were reached, respectively. The mobile polarizer may be a practical and efficient means to make the applicability of hyperpolarized (129)Xe more widespread.
Collapse
Affiliation(s)
- Sergey E. Korchak
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
50
|
Sloniec J, Schnurr M, Witte C, Resch-Genger U, Schröder L, Hennig A. Biomembrane interactions of functionalized cryptophane-A: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent. Chemistry 2013; 19:3110-8. [PMID: 23319433 DOI: 10.1002/chem.201203773] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Indexed: 12/19/2022]
Abstract
Fluorescent derivatives of the (129)Xe NMR contrast agent cryptophane-A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized (129)Xe (Hyper-CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane-bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid-crystalline phase of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was most efficient. Fluorescence depth quenching and flip-flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper-CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper-CEST signal.
Collapse
Affiliation(s)
- Jagoda Sloniec
- Division 1.10 Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|