1
|
Poiani SB, Dobeš P, Kunc M, Pereira MC, Bueno OC, Hyršl P. The Influence of Selected Insecticides on the Oxidative Response of Atta sexdens (Myrmicinae, Attini) Workers. NEOTROPICAL ENTOMOLOGY 2023; 52:1088-1099. [PMID: 37656416 PMCID: PMC10695876 DOI: 10.1007/s13744-023-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Reactive oxygen species (ROS) are generated as products of normal cellular metabolic activities; however, the use of pesticides to control leafcutter ants leads to unbalanced ROS production. We evaluated the effects of two insecticides (fipronil, sulfluramid) and metallic insecticide complex (magnesium complex [Mg(hesp)2(phen)] (1)) on the superoxide dismutase (SOD), glutathione (GSH) and the overall antioxidant capacity using two different methodologies: total radical-trapping potential (TRAP) and oxygen radical absorbance capacity (ORAC). Media workers of Atta sexdens (C. Linnaeus) were exposed to the insecticides for 24 h, 48 h, 72 h and 96 h before their fat bodies were dissected for analysis. The results showed that although the sulfluramid may cause the production of ROS, its slow action in the organism does not lead to oxidative stress. There is a rise in oxidative stress in workers of leafcutter ants treated with fipronil because SOD significantly increased when compared to the control group. On the other hand, Mg1-complex suppressed both GSH and SOD, indicating that the immune system may be affected by Mg1-complex, which has a delayed activity ideal for its use in chemical pest control. Both TRAP and ORAC evaluated total antioxidant capacities; however, ORAC proved to be a more sensitive method. In conclusion, the Mg1-complex is a new compound that should be further investigated as a potential replacement for fipronil and sulfluramid in pest control.
Collapse
Affiliation(s)
- Silvana Beani Poiani
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mayara Cristina Pereira
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Odair Correa Bueno
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Sugeçti S, Akbayrak S, Büyükgüzel E, Büyükgüzel K. Ecotoxicological Effects of Titanium Aluminum Carbide Composites on Biochemical and Metabolic Parameters of Galleria mellonella. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:52. [PMID: 37776340 DOI: 10.1007/s00128-023-03807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Metal composites have been extensively used in various fields such as automotive industry, medicine and pharmacy. However, the high exposure of these chemicals may have an adverse effect on the living organisms. In this study, the effect of titanium aluminum carbide (Ti3AlC2) on the model organism Galleria mellonella was investigated. The change in the metabolic enzymes such as alanine transferase, aspartate transferase, gamma-glutamyl transferase, lactate dehydrogenase, amylase, creatine kinase, alkaline phosphatase in the hemolymph of G. mellonella which was exposed to Ti3AlC2 was determined. The contents of the bilirubin, albumin, uric acid and the total protein were also measured after the Ti3AlC2 exposure on the model organism. The results of our study clearly indicate that Ti3AlC2 has adverse effects on the model organism G. mellonella.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Serdar Akbayrak
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetic, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
3
|
Skowronek P, Strachecka A. Cannabidiol (CBD) Supports the Honeybee Worker Organism by Activating the Antioxidant System. Antioxidants (Basel) 2023; 12:antiox12020279. [PMID: 36829838 PMCID: PMC9952166 DOI: 10.3390/antiox12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
In the experiment, we tested the effect of 30% CBD oil on the activity of the antioxidant system (superoxide dismutase, catalase, glutathione peroxidase, glutathione), the level of total antioxidant capacity, and the concentrations of ions (calcium, magnesium, and phosphorus) in honeybee workers in the hive test. For this purpose, we prepared hives containing all stages of the development of honey bees and started the experiment by adding 200 marked, one-day old bees to each colony (intended for hemolymph collection). In the test, we created three groups (two colonies per group): (1) Experimental with CBD oil mixed with sugar syrup (CSy); (2) experimental with CBD oil on textile strips (CSt); and (3) control with pure sugar syrup only (C). Every week, we collected hemolymph from the marked bees. In the experiment, all antioxidant enzyme activities were higher for the experimental groups CSy and CSt compared to group C. The highest concentrations/levels were obtained for the CSy group. Concentrations of calcium, magnesium, and phosphorus ions were also higher for the experimental groups compared to the C group (the highest concentration for the CSy group). We conclude that CBD oil positively contributes to stimulating the antioxidant system of honeybees.
Collapse
|
4
|
KAYA S. Assessment of The Effect of Thymbra capitata Ethanolic Extract on Galleria mellonella Hemolymph Antioxidant Enzymes. COMMAGENE JOURNAL OF BIOLOGY 2022. [DOI: 10.31594/commagene.1204178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conehead thyme (Thymbra capitata) is widely distributed in the countries of the Mediterranean region and used due to its medical properties. The antibacterial, antifungal, and strong antioxidant properties of T. capitata are known. The model organism Galleria mellonella is mostly preferred for immunological studies and for the study of human pathogens. The aim of the study was to determine the effect of the ethanolic extract of T. capitata on the antioxidant defense of the hemolymph in G. mellonella larva. Solutions prepared with Phosphate-Buffered Saline (PBS) from the dry matter obtained from ethanolic extract at doses between 2 mg mL-1 and 20 mg mL-1 were injected into G. mellonella larvae. According to our findings, T. capitata extract had no effect on malondialdehyde (MDA) levels. However, it was determined that all doses between 10 to 20 mg mL-1 significantly reduced superoxide dismutase (SOD) and catalase (CAT) activities compared to the control groups. According to the results of our study, high doses of T. capitata extract had negative effects on G. mellonella antioxidant defense.
Collapse
Affiliation(s)
- Serhat KAYA
- ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ, FEN VE EDEBİYAT FAKÜLTESİ, BİYOLOJİ BÖLÜMÜ
| |
Collapse
|
5
|
Sánchez-Aceves LM, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118078. [PMID: 34534830 DOI: 10.1016/j.envpol.2021.118078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1-20 μg L-1) and Al (0.01-8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
Collapse
Affiliation(s)
- Livier M Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| |
Collapse
|
6
|
Sánchez-Aceves L, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109071. [PMID: 33992815 DOI: 10.1016/j.cbpc.2021.109071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Despite the ubiquitous presence of multiple pollutants in aqueous environments have been extensively demonstrated, the ecological impact of chemical cocktails has not been studied in depth. In recent years, environmental studies have mainly focused on the risk assessment of individual chemical substances neglecting the effects of complex mixtures even though it has been demonstrated that combined effects exerted by pollutants might represent a greater hazard to the biocenosis. The current study evaluates the effects on the oxidative stress status induced by individual forms and binary mixtures of ibuprofen (IBU) and aluminum (Al) on brain, gills, liver and gut tissues of Danio rerio after long-term exposure to environmentally relevant concentrations (0.1-11 μg L-1 and 0.05 mg L-1- 6 mg L-1, respectively). Lipid peroxidation (LPO), Protein carbonyl content (PCC) and activity of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) were evaluated. Moreover, concentrations of both toxicants and the metabolite 2-OH-IBU were quantified on test water and tissues. Results show that ibuprofen (IBU) and aluminum (Al) singly promote the production of radical species and alters the oxidative stress status in all evaluated tissues of zebrafish, nevertheless, higher effects were elicited by mixtures as different interactions take place.
Collapse
Affiliation(s)
- Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| |
Collapse
|
7
|
Sugeçti S, Tunçsoy B, Büyükgüzel E, Özalp P, Büyükgüzel K. Ecotoxicological effects of dietary titanium dioxide nanoparticles on metabolic and biochemical parameters of model organism Galleria mellonella (Lepidoptera: Pyralidae). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:423-434. [PMID: 35895947 DOI: 10.1080/26896583.2021.1969846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) are now being used in many industrial activities, such as mining, paint and glass industries. The frequent industrial use of NPs contributes to environmental pollution and may cause cellular and oxidative damage in native organisms. In this study, the toxic effects of titanium dioxide nanoparticles (TiO2 NPs) were investigated using Galleria mellonella larvae as a model insect species. Alterations in cell damage indicators, such as alanine transferase, aspartate transferase, lactate dehydrogenase, non-enzymatic antioxidants and biochemical parameters, were determined in the hemolymph of G. mellonella larvae exposed to TiO2 NPs at different concentrations (5, 50, 250 and 1250 μg/mL) in their diets. TiO2 NPs caused concentration-dependent cellular damage in the hemolymph of G. mellonella larvae and increased the levels of the non-enzymatic antioxidants uric acid and bilirubin. In addition, total protein in hemolymph significantly decreased at the highest concentration (1250 μg/mL) of TiO2 NPs. Level of the urea increased at the highest concentration (1250 μg/mL) of TiO2 NPs, whereas the amount of glucose was not affected. These findings demonstrated that TiO2 NPs caused concentration-dependent toxic effects on G. mellonella larvae.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Benay Tunçsoy
- Faculty of Engineering, Department of Bioengineering, Adana Alparslan Turkeş Science and Technology University, Adana, Turkey
| | - Ender Büyükgüzel
- Science and Art Faculty, Department of Molecular Biology and Genetics, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Özalp
- Science and Art Faculty Department of Biology, Çukurova University, Adana, Turkey
| | - Kemal Büyükgüzel
- Science and Art Faculty, Department of Biology, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
8
|
Pathophysiological effects of Klebsiella pneumoniae infection on Galleria mellonella as an invertebrate model organism. Arch Microbiol 2021; 203:3509-3517. [PMID: 33909089 DOI: 10.1007/s00203-021-02346-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Klebsiella pneumoniae is an important human pathogen causing urinary tract infections and pneumonia. Due to the increase in resistant strains and being an opportunistic pathogen, it is very important to determine the virulence process, the cellular damage it causes in the host and the immunological response level of the host. In this study, invertebrate infection model Galleria mellonella larvae were used to investigate cellular damage, antioxidant response and changes in biochemical parameters due to K. pneumoniae infection. The activity of cell damage indicators alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase increased in hemolymph of G. mellonella larvae due to K. pneumoniae virulence. Creatine kinase, alkaline phosphatase, gamma glutamyl transferase and amylase activities were increased to regulate the disrupted energy metabolism due to infection. As a result of the damage caused by K. pneumoniae infection, changes occurred in the amount of non-enzymatic antioxidants, uric acid, bilirubin and albumin. Due to K. pneumoniae infection, the amount of calcium, potassium, magnesium and phosphorus altered. This study showed that G. mellonella larvae was important infection model in the investigation of infectious cell damage and physiological effects, given the opportunistic nature of the K. pneumoniae pathogen and the lack of adequate animal models.
Collapse
|
9
|
Ilijin L, Grčić A, Mrdaković M, Vlahović M, Filipović A, Matić D, Mataruga VP. Tissue-specific responses of Lymantria dispar L. (Lepidoptera: Erebidae) larvae from unpolluted and polluted forests to thermal stress. J Therm Biol 2021; 96:102836. [PMID: 33627274 DOI: 10.1016/j.jtherbio.2021.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/12/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
In this paper the effects of increased environmental temperature on the relative growth rate (RGR) and developmental time in 5th instar L. dispar larvae originating from unpolluted and polluted forests were analyzed. As indicators of the level of generated reactive oxygen species in thermal stress, we estimated midgut and hemolymph activity of the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as the detoxifying enzymes glutathione S-transferase (GST), carboxylesterase (CaE) and acetylcholinesterase (AChE) from the midgut and brain tissue. We also examined the influence of induced thermotolerance as a species' ability to overcome the negative effects of this stressor. In larvae originating from the unpolluted forest, the midgut is the primary location of increased SOD and CAT activity and induced thermotolerance did not modified their activity in either tissue. In larvae from the polluted forest, in both tissues SOD activity was more sensitive to an increased temperature and induced thermotolerance than CAT. Carboxylesterase responded diversely to thermal stress depending on the analyzed tissue regardless the origin of larvae, while the activity of GST and AChE in tissue depended on the origin of larvae. Induced thermotolerance modified the activity of detoxifying enzymes in larvae originating from the polluted forest. Combining the selected parameters into an integrated biomarker response (IBR) the GST, CaE and AChE battery emerged as a potential biomarker for thermal stress in L. dispar larvae.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia.
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Vesna Perić Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| |
Collapse
|
10
|
Clements J, Olson JM, Sanchez‐Sedillo B, Bradford B, Groves RL. Changes in emergence phenology, fatty acid composition, and xenobiotic-metabolizing enzyme expression is associated with increased insecticide resistance in the Colorado potato beetle. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21630. [PMID: 31621115 PMCID: PMC7027459 DOI: 10.1002/arch.21630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 05/31/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is a major agricultural pest of solanaceous crops. An effective management strategy employed by agricultural producers to control this pest species is the use of systemic insecticides. Recent emphasis has been placed on the use of neonicotinoid insecticides. Despite efforts to curb resistance development through integrated pest management approaches, resistance to neonicotinoids in L. decemlineata populations continues to increase. One contributing factor may be alterations in insect fatty acids, which have multiple metabolic functions and are associated with the synthesis of xenobiotic-metabolizing enzymes to mitigate the effects of insecticide exposure. In this study, we analyzed the fatty acid composition of L. decemlineata populations collected from an organic production field and from a commercially managed field to determine if fatty acid composition varied between the two populations. We demonstrate that a population of L. decemlineata that has a history of systemic neonicotinoid exposure (commercially managed) has a different lipid composition and differential expression of known metabolic detoxification mechanisms relative to a population that has not been exposed to neonicotinoids (organically managed). The fatty acid data indicated an upregulation of Δ6 desaturase in the commercially managed L. decemlineata population and suggest a role for eicosanoids and associated metabolic enzymes as potential modulators of insecticide resistance. We further observed a pattern of delayed emergence within the commercially managed population compared with the organically managed population. Variations in emergence timing together with specific fatty acid regulation may significantly influence the capacity of L. decemlineata to develop insecticide resistance.
Collapse
Affiliation(s)
- Justin Clements
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Jake M. Olson
- Department of Animal SciencesUniversity of Wisconsin‐MadisonMadisonWisconsin
| | | | - Benjamin Bradford
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Russell L. Groves
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| |
Collapse
|
11
|
Filipović A, Mrdaković M, Ilijin L, Vlahović M, Todorović D, Grčić A, Perić-Mataruga V. Effect of fluoranthene on antioxidative defense in different tissues of Lymantria dispar and Euproctis chrysorrhoea larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108565. [PMID: 31276812 DOI: 10.1016/j.cbpc.2019.108565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
This study examined the effect of long-term exposure to environmentally relevant concentrations of dietary fluoranthene (6.7 and 67 ng / g dry food weight) on defense mechanisms of the polyphagous forest insects Lymantria dispar L. and Euproctis chrysorrhoea L. The activities and expression of isoforms of superoxide dismutase (SOD) and catalase (CAT), the activities of glutathione S-transferase (GST) and glutathione reductase (GR), and total glutathione content (GSH) were determined in the whole midgut and midgut tissue, while SOD and CAT activities were assessed in hemolymph of the larvae. The results showed significant changes of enzyme activities, with more pronounced responses in larval midgut tissues, and between-species differences in patterns of response. Significantly increased activity of SOD was recorded in the whole midgut and midgut tissue of L. dispar larvae, as well as in midgut tissue of E. chrysorrhoea larvae. Fluoranthene increased CAT activity in midgut tissue of L. dispar larvae, and in the whole midgut and midgut tissue of E. chrysorrhoea larvae. Different expression patterns were detected for enzyme isoforms in tissues of larvae exposed to dietary fluoranthene. Total GSH content and GST activity increased in E. chrysorrhoea larval midgut tissue. Significantly decreased SOD activity in hemolymph of L. dispar larvae, and opposite changes in CAT activity were recorded in the hemolymph of larvae of two insect species. The tissue-specific responses of enzymes to dietary fluoranthene, recorded in each species, enabled the larvae to overcome the pollutant induced oxidative stress, and suggest further assessment of their possible use as early-warning signals of environmental pollution.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
12
|
Zhu JJ, Jiang JG. Pharmacological and Nutritional Effects of Natural Coumarins and Their Structure-Activity Relationships. Mol Nutr Food Res 2018; 62:e1701073. [PMID: 29750855 DOI: 10.1002/mnfr.201701073] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Indexed: 01/24/2023]
Abstract
Coumarins are fused benzene and pyrone ring systems with a wide spectrum of bioactivities, including antitumor, anti-inflammation, antiviral, and antibacterial effects. In this paper, the current development of coumarin-based drugs is introduced, and their structure-activity relationship is discussed by reviewing the relevant literature published in the past 20 years. Coumarin molecules can be customized by the target site to prevent systemic side effects by virtue of structural modification. The ortho-phenolic hydroxyl on the benzene ring has remarkable antioxidant and antitumor activities. Coumarins with aryl groups at the C-4 position have good activities in anti-HIV, antitumor, anti-inflammation, and analgesia. C-3 phenylcoumarins have strong anti-HIV and antioxidant effects. Tetracycline pyranocoumarins can significantly inhibit HIV; osthol structural analogues have antimicrobial activity. Praeruptorin C and its derivatives play an important role in lowering blood pressure and dilating coronary arteries, and khellactone derivatives have significant inhibitory effects on AIDS, cancer, and cardiovascular diseases. It is concluded that the specific site on the core structure of coumarin exhibits one or more activities due to the electronic or steric effects of the substituents. This review is intended to be conducive to rational design and development of more active and less toxic agents with a coumarin scaffold.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Department of Sugar Engineering, College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- Department of Sugar Engineering, College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
13
|
Büyükgüzel E, Erdem M, Tunaz H, Küçük C, Atılgan UC, Stanley D, Büyükgüzel K. Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:121-128. [DOI: 10.1016/j.cbpa.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022]
|
14
|
Erdem M, Küçük C, Büyükgüzel E, Büyükgüzel K. Ingestion of the anti-bacterial agent, gemifloxacin mesylate, leads to increased gst activity and peroxidation products in hemolymph of Galleria mellonella l. (lepidoptera: pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:202-209. [PMID: 27588824 DOI: 10.1002/arch.21352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gemifloxacin mesylate (GEM) is a synthetic, fourth-generation fluoroquinolone antibacterial antibiotic that has a broad spectrum of activity against bacteria. GEM inhibits DNA synthesis by inhibiting DNA gyrase and topoisomerase IV activities. Recent research into insect nutrition and mass-rearing programs, in which antibiotics are incorporated into the culture media to maintain diet quality, raised a question of whether clinical antibiotics influence the health or biological performance of the insects that ingest these compounds. Because some antibiotics are pro-oxidant compounds, we addressed the question with experiments designed to assess the effects of GEM (mesylate salt) on oxidative stress indicators, using Galleria mellonella larvae. The insects were reared from first-instar larvae to adulthood on artificial diets amended with GEM at 0.001, 0.01, 0.1, or 1.0%. Feeding on the 1% diets led to significantly increased hemolymph contents of the lipid peroxidation product, malondialdehyde and protein oxidation products, protein carbonyl. All GEM concentrations led to increased hemolymph glutathione S-transferase activity. We inferred that although it was not directly lethal to G. mellonella larvae, dietary exposure to GEM exerts measurable oxidative damage, possibly on insects generally. Long-term, multigenerational effects remain unknown.
Collapse
Affiliation(s)
- Meltem Erdem
- Ahmet Erdoğan Vocational School of Health Services, Bülent Ecevit University, Zonguldak, Turkey
| | - Ceyhun Küçük
- Faculty of Science and Arts, Department of Molecular Biology and Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Ender Büyükgüzel
- Faculty of Science and Arts, Department of Molecular Biology and Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Faculty of Science and Arts, Department of Biology, Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
15
|
Fruttero LL, Moyetta NR, Uberti AF, Grahl MVC, Lopes FC, Broll V, Feder D, Carlini CR. Humoral and cellular immune responses induced by the urease-derived peptide Jaburetox in the model organism Rhodnius prolixus. Parasit Vectors 2016; 9:412. [PMID: 27455853 PMCID: PMC4960889 DOI: 10.1186/s13071-016-1710-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the entomotoxicity of plant ureases has been reported almost 20 years ago, their insecticidal mechanism of action is still not well understood. Jaburetox is a recombinant peptide derived from one of the isoforms of Canavalia ensiformis (Jack Bean) urease that presents biotechnological interest since it is toxic to insects of different orders. Previous studies of our group using the Chagas disease vector and model insect Rhodnius prolixus showed that the treatment with Jack Bean Urease (JBU) led to hemocyte aggregation and hemolymph darkening, among other effects. In this work, we employed cell biology and biochemical approaches to investigate whether Jaburetox would induce not only cellular but also humoral immune responses in this species. RESULTS The findings indicated that nanomolar doses of Jaburetox triggered cation-dependent, in vitro aggregation of hemocytes of fifth-instar nymphs and adults. The use of specific eicosanoid synthesis inhibitors revealed that the cellular immune response required cyclooxygenase products since indomethacin prevented the Jaburetox-dependent aggregation whereas baicalein and esculetin (inhibitors of the lipoxygenases pathway) did not. Cultured hemocytes incubated with Jaburetox for 24 h showed cytoskeleton disorganization, chromatin condensation and were positive for activated caspase 3, an apoptosis marker, although their phagocytic activity remained unchanged. Finally, in vivo treatments by injection of Jaburetox induced both a cellular response, as observed by hemocyte aggregation, and a humoral response, as seen by the increase of spontaneous phenoloxidase activity, a key enzyme involved in melanization and defense. On the other hand, the humoral response elicited by Jaburetox injections did not lead to an increment of antibacterial or lysozyme activities. Jaburetox injections also impaired the clearance of the pathogenic bacteria Staphylococcus aureus from the hemolymph leading to increased mortality, indicating a possible immunosuppression induced by treatment with the peptide. CONCLUSIONS In our experimental conditions and as part of its toxic action, Jaburetox activates some responses of the immune system of R. prolixus both in vivo and in vitro, although this induction does not protect the insects against posterior bacterial infections. Taken together, these findings contribute to the general knowledge of insect immunity and shed light on Jaburetox's mechanism of action.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto do Cérebro (InsCer) - Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, prédio 63, CEP 90610-000, Porto Alegre, RS, Brazil.
| | - Natalia R Moyetta
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto F Uberti
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus V Coste Grahl
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda C Lopes
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Denise Feder
- Department of General Biology l, Insect Biology Laboratory, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Celia R Carlini
- Brain Institute (INSCER) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Biophysics, Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Çalik G, Büyükgüzel K, Büyükgüzel E. Reduced Fitness in Adults From Larval, Galleria mellonella (Lepidoptera: Pyralidae) Reared on Media Amended With the Antihelmintic, Mebendazole. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:182-187. [PMID: 26491189 DOI: 10.1093/jee/tov305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Benzimidazole antihelmintics, including mebendazole, have a broad antiparasitic spectrum. These drugs play a major role in the treatments of parasites of intestines or other organs of vertebrates, humans, and other animals.The impact of mebendazole on the biology of the greater wax moth, Galleria mellonella (L.), was assessed by observation of several developmental parameters as follows: survivorship, developmental time, and adult longevity. Sublethal toxicity was measured through reproductive parameters such as fecundity and hatchability.The larvae were reared on artificial diet from first-instar larvae to the adult stage in the laboratory. The diets contained mebendazole at different concentrations of 0.005, 0.05, 0.5, or 1.0%. Control diet did not containme bendazole and produced seventh-instar larvae in 96.6±1.67% of cases, whereas the addition of mebendazole into diet at 1.0% significantly decreased survivorship of seventh-instar larvae to 79.9±4.08%. The diet with the highest concentration of mebendazole decreased survivorship in the adult stage from 79.9±2.35 to 56.6±4.73%, and shortened the developmental time for adult emergence from 36.7±0.48 to 34.1±0.63 d. All mebendazole concentrations shortened adult longevity and significantly decreased fecundity and hatch ability of G. mellonella. The highest dietary concentration of this antihelmintic significantly decreased the egg number to 28.6±2.89 and hatching rate to 51.7±1.85%. The present study demonstrates that mebendazole exhibits significant adverse effects on greater wax moth, leading to deteriorated life table parameters and decreased adult fitness.
Collapse
|
17
|
Erdem M, Büyükgüzel E. THE EFFECTS OF XANTHOTOXIN ON THE BIOLOGY AND BIOCHEMISTRY OF Galleria mellonella L. (LEPIDOPTERA: PYRALIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:193-203. [PMID: 25821173 DOI: 10.1002/arch.21236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of a dietary plant allelochemical, xanthotoxin (XA), on survivorship, development, male and female adult longevity, fecundity, and hatchability of the greater wax moth Galleria mellonella L. were investigated. Oxidative stress indicators, the lipid peroxidation product, malondialdehyde (MDA), and protein oxidation products, protein carbonyl (PCO) contents, and activities of a detoxification enzyme glutathione S-transferase (GST) activity were determined in wax moth adults. The insect was reared from first-instar larvae on an artificial diets containing XA at 0.001, 0.005, or 0.1% to adult stage in laboratory conditions. Relative to the controls, the diets containing XA concentrations led to decreased survivorship in seventh instar, pupal, and adult stages. Compared to control diet (77.7%), the highest dietary XA concentration decreased survivorship to adulthood to 11.0%. The highest XA concentration (0.1%) reduced female longevity from 10.4 to 5.7 days and decreased egg numbers from 95.0 to 33.5 and hatchability from 82.7 to 35.6%. The lowest XA concentration (0.001%) led to about a sixfold increase in MDA content. XA at high concentrations (0.005 and 0.1%) increased MDA (by threefold) and protein carbonyl (by twofold) contents decreased GST activity. The highest dietary XA concentration decreased GST activity from 0.28 ± 0.025 to 0.16 ± 0.005 μmol/mg protein/min. We infer from these findings that XA-induced oxidative stress led to decreased biological fitness.
Collapse
Affiliation(s)
- Meltem Erdem
- Ahmet Erdoğan Vocational School of Health Services, Bülent Ecevit University, Zonguldak, Turkey
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
18
|
Park Y, Stanley DW, Kim Y. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:63-72. [PMID: 26071791 DOI: 10.1016/j.jinsphys.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoids mediate ROS production by activating NADPH-dependent oxidase (NOX) and tested the idea in the model insect, Spodoptera exigua. A NOX gene (we named SeNOX4) was identified and cloned, yielding a full open reading frame encoding 547 amino acid residues with a predicted molecular weight of 63,410Da and an isoelectric point at 9.28. A transmembrane domain and a large intracellular domain containing NADPH and FAD-binding sites were predicted. Phylogenetic analysis indicated SeNOX4 clusters with other NOX4 genes. SeNOX4 was expressed in all life stages except eggs, and exclusively in hemocytes. Bacterial challenge and, separately, arachidonic acid (AA, a precursor of eicosanoid biosynthesis) injection increased its expression. The internalization step was assessed by counting hemocytes engulfing fluorescence-labeled bacteria. The phagocytic behavior was inhibited by dsRNA suppression of SeNOX4 expression and, separately by dexamethasone (DEX, a specific inhibitor of eicosanoid biosynthesis) treatments. However, injecting AA to dsSeNOX4-treated larvae did not rescue the phagocytic activity. Hemocytic ROS production increased following bacterial challenge, which was sharply reduced in dsSeNOX4-treated, and separately, in DEX-treated larvae. AA partially reversed the suppressed ROS production in dsSeNOX4-treated larvae. Treating larvae with either the ROS-suppressing dsSeNOX4 construct or DEX rendered experimental larvae unable to inhibit bacterial proliferation in their hemocoels. We infer that eicosanoids mediate ROS production during phagocytosis by inducing expression of SeNOX4.
Collapse
Affiliation(s)
- Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - David W Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 Providence Rd., Columbia, MO 65203, USA
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
19
|
Dere B, Altuntaş H, Nurullahoğlu ZU. INSECTICIDAL AND OXIDATIVE EFFECTS OF AZADIRACHTIN ON THE MODEL ORGANISM Galleria mellonella L. (LEPIDOPTERA: PYRALIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:138-152. [PMID: 25777183 DOI: 10.1002/arch.21231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The insecticidal effects, specifically, changes in hemolymph total protein and malondialdehyde (MDA) levels, and antioxidant enzyme activities of azadirachtin (AZA) given to the wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) larvae via force feeding were investigated. Bioassays showed that the LD50 and LD99 (lethal dose) values of AZA were 2.1 and 4.6 μg/larva, respectively. Experimental analyses were performed with five doses of AZA (0.5, 1, 1.5, 2, and 3 μg/larva). Total protein level in larval hemolymph increased at all AZA doses at 24 h whereas a considerable decrease was observed at 2 and 3 μg/larva doses, and only an increase displayed at 1.5 μg/larva at 72 h. The level of MDA increased at 2 and 3 μg/larva doses at 24 h compared with controls. This trend was also observed at 1.5, 2, and 3 μg/larva doses at 72 h and MDA levels were lower when compared with those of 24 h at all doses except for 1.5 μg/larva dose. Catalase activity decreased at 1, 1.5, and 2 μg/larva doses at 24 h whereas increased at all doses except for 0.5 μg/larva at 72 h compared with controls. AZA led to a decline in superoxide dismutase activity at all experimental doses at 24 and 72 h except for 3 μg/larva doses at 72 h. An increase in glutathione-S-transferase (GST) activity was evident at all AZA doses at 24 h. AZA displayed 68% decline in GST activity at 72 h post treatments when compared to 24 h. Consequently, We infer that the toxicity of AZA extends beyond its known actions in molting processes to redox homeostasis.
Collapse
Affiliation(s)
- Beyza Dere
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Anadolu University, Eskişehir, Turkey
| | - Z Ulya Nurullahoğlu
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Altuntaş H. Determination of Gibberellic Acid (GA3)-Induced Oxidative Stress in a Model Organism Galleria mellonella L. (Lepidoptera: Pyralidae). ENVIRONMENTAL ENTOMOLOGY 2015; 44:100-105. [PMID: 26308811 DOI: 10.1093/ee/nvu020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
The plant growth regulator gibberellic acid (GA3) is known to negatively impact growth and development of insects. In this study, larvae of Galleria mellonella L. (Lepidoptera: Pyralidae) were fed a diet with varying dosages of GA3 to investigate how antioxidant enzymes are influenced. Activity levels in last instars reared in laboratory at 25 ± 2°C, 60 ± 5% relative humidity, and a photoperiod of 12:12 (L:D) h were measured for superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT). Treatment with GA3 in diet resulted in a remarkable increase in the activities of both SOD and GST at lower GA3 doses (50-1,000 ppm) with respect to control and higher doses. The activity of CAT in the hemolymph of last instars significantly increased at all doses when compared with that in the hemolymph of untreated larvae. This trend in the increase of CAT was not dose-wise, except for the significant increases at 2,000 and 5,000 ppm when compared with that of untreated and all treated groups. Consequently, our results showed that GA3 is effective at activating the antioxidant defense system of insects as a source of free radical and can be toxic for larvae in a dose-dependent manner. Therefore, we suggest that the increase in the activity of GST, SOD, and CAT in larvae may indicate a physiological adaptability to compensate for GA3-induced stress.
Collapse
Affiliation(s)
- H Altuntaş
- Department of Biology, Faculty of Science, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
21
|
Zhang CF, Dai LS, Wang L, Qian C, Wei GQ, Li J, Zhu BJ, Liu CL. Eicosanoids mediate sHSP 20.8 gene response to biotic stress in larvae of the Chinese oak silkworm Antheraea pernyi. Gene 2014; 562:32-9. [PMID: 25527122 DOI: 10.1016/j.gene.2014.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Small heat shock proteins (sHSPs) can regulate protein folding and protect cells from stress. To investigate the role of sHSPs in the silk-producing insect Antheraea pernyi (A. pernyi; Lepidoptera: Saturniidae), cDNA encoding HSP20.8 in A. pernyi, termed Ap-sHSP20.8, was identified as a 564 bp ORF. The translated amino acid sequence encoded 187 residues with a calculated molecular mass of 20.8 kDa and an isoelectronic point (pI) of 5.98; the sequence showed homology to sHSP chaperone proteins from other insects. Ap-sHSP20.8 mRNA transcript expression was abundant in the midgut and fat body and found to be both constitutive and inducible by infectious stimuli. Therefore, Ap-sHSP20.8 may play important roles in A. pernyi immune responses under biotic stress. Furthermore, we found that eicosanoids could mediate the induction of Ap-sHSP20.8 in the fat body and midgut. Our findings show that sHSPs may be promising molecules to target in order to cripple immunity in insect pests.
Collapse
Affiliation(s)
- Cong-Fen Zhang
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China; Department of Pharmacology, Wannan Medical College, Anhui, Wuhu 241002, PR China
| | - Li-Shang Dai
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Cen Qian
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Guo-Qing Wei
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Jun Li
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Bao-Jian Zhu
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China.
| | - Chao-Liang Liu
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China.
| |
Collapse
|
22
|
Adamski Z, Adamski Z, Marciniak P, Ziemnicki K, Büyükgüzel E, Erdem M, Büyükgüzel K, Ventrella E, Falabella P, Cristallo M, Salvia R, Bufo SA, Scrano L. Potato leaf extract and its component, α-solanine, exert similar impacts on development and oxidative stress in Galleria mellonella L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:26-39. [PMID: 25041927 DOI: 10.1002/arch.21177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plants synthesize a broad range of secondary metabolites that act as natural defenses against plant pathogens and herbivores. Among these, potato plants produce glycoalkaloids (GAs). In this study, we analyzed the effects of the dried extract of fresh potato leaves (EPL) on the biological parameters of the lepidopteran, Galleria mellonella (L.) and compared its activity to one of the main EPL components, the GA α-solanine. Wax moth larvae were reared from first instar on a diet supplemented with three concentrations of EPL or α-solanine. Both EPL and α-solanine affected survivorship, fecundity, and fertility of G. mellonella to approximately the same extent. We evaluated the effect of EPL and α-solanine on oxidative stress in midgut and fat body by measuring malondialdehyde (MDA) and protein carbonyl (PCO) contents, both biomarkers of oxidative damage. We evaluated glutathione S-transferase (GST) activity, a detoxifying enzyme acting in prevention of oxidative damage. EPL and α-solanine altered MDA and PCO concentrations and GST activity in fat body and midgut. We infer that the influence of EPL on G. mellonella is not enhanced by synergistic effects of the totality of potato leaf components compared to α-solanine alone.
Collapse
Affiliation(s)
- Zbigniew Adamski
- Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Defferrari MS, da Silva R, Orchard I, Carlini CR. Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus. Toxicon 2014; 82:18-25. [PMID: 24561121 DOI: 10.1016/j.toxicon.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein.
Collapse
Affiliation(s)
- M S Defferrari
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - R da Silva
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - C R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto do Cérebro - InsCer, Pontificia Universidade Católica do Rio Grande do Sul, and Department of Biophysics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Büyükgüzel E, Büyükgüzel K, Erdem M, Adamski Z, Adamski Z, Marciniak P, Ziemnicki K, Ventrella E, Scrano L, Bufo SA. The influence of dietary α-solanine on the waxmoth Galleria mellonella L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:15-24. [PMID: 23494897 DOI: 10.1002/arch.21089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant allelochemicals are nonnutritional chemicals that interfere with the biology of herbivores. We posed the hypothesis that ingestion of a glycoalkaloid allelochemical, α-solanine, impairs biological parameters of greater wax moths Galleria mellonella. To test this idea, we reared wax moths on artificial diets with 0.015, 0.15, or 1.5 mg/100 g diet of α-solanine. Addition of α-solanine to the diet affected survival of seventh-instar larvae, pupae, and adults; and female fecundity and fertility. The diet containing the highest α-solanine concentration led to decreased survivorship, fecundity, and fertility. The diets supplemented with α-solanine led to increased malondialdehyde and protein carbonyl contents in midgut and fat body and the effect was dose-dependent. Dietary α-solanine led to increased midgut glutathione S-transferase activity and to decreased fat body glutathione S-transferase activitiy. We infer from these findings that α-solanine influences life history parameters and antioxidative enzyme activities in the midgut and fat body of G. mellonella.
Collapse
Affiliation(s)
- Ender Büyükgüzel
- Department of Biology, Faculty of Arts and Science, Bülent Ecevit University, Zonguldak, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biol Toxicol 2013; 29:117-29. [PMID: 23475114 PMCID: PMC3597273 DOI: 10.1007/s10565-013-9240-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 12/22/2022]
Abstract
Boric acid is widely used as an insecticide, acaricide, herbicide, and fungicide and also during various industrial processings. Hence, numerous populations are subjects to this toxic compound. Its action on animals is still not fully known and understood. We examined the effect of boric acid on larvae of greater wax moth (Galleria mellonella). The chemical appeared to be toxic for larvae, usually in a concentration-dependent manner. Exposed groups revealed increased lipid peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase. We also observed changes of ultrastructure, which were in tune with biochemical assays. We suggest that boric acid has a broad mode of action, which may affect exposed larvae, and even if sublethal, they may lead to disturbances within exposed populations.
Collapse
|
26
|
Jena K, Kar PK, Babu CS, Giri S, Singh SS, Prasad BC. Comparative study of total hydroperoxides and antioxidant defense system in the Indian tropical tasar silkworm, Antheraea mylitta, in diapausing and non-diapausing generations. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:123. [PMID: 24786341 PMCID: PMC4015700 DOI: 10.1673/031.013.12301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/28/2012] [Indexed: 06/03/2023]
Abstract
In the present study, the total hydroperoxides, catalase, glutathione-s-transferase, and ascorbic acid contents were determined in different developmental stages of the non-diapause and the diapause generation of the tropical tasar silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae). The results showed stage-specific significantly higher levels of total hydroperoxides, catalase, and ascorbic acid contents in the non-diapause as compared to the diapause generation (p < 0.05). However, a significantly enhanced level of glutathione-S-transferase activity was observed in mature 5th instar larvae of the diapause generation (p < 0.05). In the case of pupae, significantly higher levels of total hydroperoxides, catalase, and glutathione-s-transferase activity were observed in the non-diapause generation (p < 0.05). These results could be the effect of intensive metabolic transformation that takes place in tissues of the non-diapause generation and causes increased production of reactive oxygen species, such as hydroperoxides. The results suggest that antioxidants play an important role in protecting cells against reactive oxygen species.
Collapse
Affiliation(s)
- Karmabeer Jena
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| | - Prasanta K. Kar
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| | - Chittithoti S. Babu
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| | - Shantakar Giri
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| | - Shyam S. Singh
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| | - Bhagwan C. Prasad
- Central Tasar Research and Training Institute, Piska Nagri, Ranchi, Jharkhand, India
| |
Collapse
|
27
|
Huang Y, Xu Z, Lin X, Feng Q, Zheng S. Structure and expression of glutathione S-transferase genes from the midgut of the Common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1033-1044. [PMID: 21605564 DOI: 10.1016/j.jinsphys.2011.05.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 05/30/2023]
Abstract
Glutathione S-transferases (GSTs) play a pivotal role in detoxifying endogenous and xenobiotic compounds and oxidative stress resistance in cells. In this study, five GST genes, including three Sigma GSTs (SlGSTs1, SlGSTs2, and SlGSTs3), one Omega GST (SlGSTo1) and one un-classified GST (SlGSTu1) were identified from the midgut of the Common cutworm, Spodoptera litura. Structure analyses of the eight (including the previously identified Epsilon GST genes, SlGSTe1, SlGSTe2 and SlGSTe3 from the same insect) SlGSTs genes showed that the Epsilon SlGSTe genes do not contain any intron, while the Sigma SlGSTs contain three introns and the Omega SlGSTo1 and the un-classified SlGSTu1 contain five introns. Analysis of the spatial and temporal expression of these eight SlGSTs indicated that SlGSTe1, SlGSTs2 and SlGSTo1 expressed in all stages of development from the egg to the adult stages. SlGSTe2, SlGSTe3, SlGSTs1, SlGSTs3 and SlGSTu1 had higher expression levels in the larval stages than in other stages and their expression levels in the midgut were higher than in other tissues. SlGSTs1 was expressed in the larval midgut but not in the fat body and could be induced by bacterial infections. The expression of SlGSTe1, SlGSTe3, SlGSTs1 and SlGSTs3 was increased by chlorpyrifos to various degrees, while the expression of SlGSTe1, SlGSTe3, SlGSTs1, SlGSTs3 and SlGSTo1 was increased by xanthotoxin. Levels of malonaldehyde, an indicator of oxidative stress, were higher in the larval midgut than in the pupal midgut. Chlorpyrifos induced the malonaldehyde content in the larvae, whereas xanthotoxin did not. It is hypothesized that high expression levels of the midgut SlGSTs might be due to the increased levels of oxidative stress caused by feeding, bacterial infection and xenobiotic compounds.
Collapse
Affiliation(s)
- Yufen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|