1
|
Raza A, Chohan TA, Zaidi SHH, Hai A, Alzahrani AR, Abida, Imran M, Saleem H. A Systematic Review on Biochemical Perspectives on Natural Products in Wound Healing: Exploring Phytochemicals in Tissue Repair and Scar Prevention. Chem Biodivers 2024; 21:e202400615. [PMID: 38958197 DOI: 10.1002/cbdv.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Wound healing is a critical process in tissue repair following injury, and traditional herbal therapies have long been utilized to facilitate this process. This review delves into the mechanistic understanding of the significant contribution of pharmacologically demonstrated natural products in wound healing. Natural products, often perceived as complex yet safely consumed compared to synthetic chemicals, play a crucial role in enhancing the wound-healing process. Drawing upon a comprehensive search strategy utilizing databases such as PubMed, Scopus, Web of Science, and Google Scholar, this review synthesizes evidence on the role of natural products in wound healing. While the exact pharmacological mechanisms of secondary metabolites in wound healing remain to be fully elucidated, compounds from alkaloids, phenols, terpenes, and other sources are explored here to delineate their specific roles in wound repair. Each phytochemical group exerts distinct actions in tissue repair, with some displaying multifaceted roles in various pathways, potentially enhancing their therapeutic value, supported by reported safety profiles. Additionally, these compounds exhibit promise in the prevention of keloids and scars. Their potential alongside economic feasibility may propel them towards pharmaceutical product development. Several isolated compounds, including chlorogenic acid, thymol, and eugenol from natural sources, are undergoing investigation in clinical trials, with many reaching advanced stages. This review provides mechanistic insights into the significant role of pharmacologically demonstrated natural products in wound healing processes.
Collapse
Affiliation(s)
- Ali Raza
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Syeda Huma H Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, 91431, Saudi Arabia
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, P.O. Box 13578, Al-Abidiyah, Makkah, 21955, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
2
|
Torsabo D, Ishak SD, Noordin NM, Koh ICC, Abduh MY, Iber BT, Kuah MK, Abol-Munafi AB. Enhancing Reproductive Performance of Freshwater Finfish Species through Dietary Lipids. AQUACULTURE NUTRITION 2022; 2022:7138012. [PMID: 36860466 PMCID: PMC9973229 DOI: 10.1155/2022/7138012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 06/18/2023]
Abstract
Dietary lipid manipulation in the feed of commercially cultured finfish is used not only to improve production and culture but also to enhance their reproductive performances. The inclusion of lipid in broodstock diet positively affects growth, immunological responses, gonadogenesis, and larval survival. In this review, existing literature on the importance of freshwater finfish species to aquaculture and the inclusion of dietary lipid compounds in freshwater fish feed to accelerate the reproduction rate is being summarized and discussed. Although lipid compounds have been confirmed to improve reproductive performance, only a few members of the most economically important species have reaped benefits from quantitative and qualitative lipid studies. There is a knowledge gap on the effective inclusion and utilization of dietary lipids on gonad maturation, fecundity, fertilization, egg morphology, hatching rate, and consequently, larval quality contributing to the survival and good performance of freshwater fish culture. This review provides a baseline for potential future research for optimizing dietary lipid inclusion in freshwater broodstock diets.
Collapse
Affiliation(s)
- Donald Torsabo
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Federal University of Agriculture Makurdi, Makurdi, Benue State, Nigeria
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Noordiyana Mat Noordin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ivan Chong Chu Koh
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Yazed Abduh
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Benedict Terkula Iber
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Federal University of Agriculture Makurdi, Makurdi, Benue State, Nigeria
| | - Meng-Kiat Kuah
- Lab-Ind Resource Sdn Bhd, 48300 Bandar Bukit Beruntung, Selangor, Malaysia
| | - Ambok Bolong Abol-Munafi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Advances in captive breeding and seed rearing of striped murrel Channa striata, a high value food fish of Asia. Anim Reprod Sci 2022; 238:106957. [DOI: 10.1016/j.anireprosci.2022.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
|
4
|
Niu F, Ju M, Du Y, Wang M, Han X, Chen Q, Zhang B, Ritzoulis C, Pan W. Changes in properties of nano protein particles (NPP) of fish muscle stored at 4 °C and its application in food quality assessment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Sp1 is Involved in Vertebrate LC-PUFA Biosynthesis by Upregulating the Expression of Liver Desaturase and Elongase Genes. Int J Mol Sci 2019; 20:ijms20205066. [PMID: 31614732 PMCID: PMC6829471 DOI: 10.3390/ijms20205066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/05/2022] Open
Abstract
The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 fads2 and elovl5, but not in Δ4 fads2 promoter. Here we cloned full-length cDNA of the rabbitfish sp1 gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 fads2 and elovl5. Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 fads2 promoter into the corresponding region of the Δ4 fads2 promoter significantly increased activity of the latter. In the Siganus canaliculatus hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 fads2 and elovl5 were positively correlated with the expression of sp1 when sp1 was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of sp1 also led to a higher conversion of 18:2n−6 to 18:3n−6, 18:2n−6 to 20:2n−6, and 18:3n−3 to 20:3n−3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 fads2 and elovl5 in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates.
Collapse
|
6
|
Ferraz RB, Kabeya N, Lopes-Marques M, Machado AM, Ribeiro RA, Salaro AL, Ozório R, Castro LFC, Monroig Ó. A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:90-97. [DOI: 10.1016/j.cbpb.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
|
7
|
Xie D, Fu Z, Wang S, You C, Monroig Ó, Tocher DR, Li Y. Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Sci Rep 2018; 8:5305. [PMID: 29593294 PMCID: PMC5871817 DOI: 10.1038/s41598-018-23668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 01/18/2023] Open
Abstract
Δ6 fatty acyl desaturase (Fads2) is a rate-limiting enzyme in long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. Comparative analysis of gene promoters of Fads2 between salmonids and carnivorous marine fish suggested that the lack of binding site for stimulatory protein 1 (Sp1) was responsible for the low expression of fads2 gene of carnivorous marine species. To confirm this speculation, the fads2 candidate promoter (2646 bp) was cloned from carnivorous marine teleost Epinephelus coioides, and 330 bp core regulatory region was identified. Several binding sites for transcriptional factors such as nuclear factor 1, nuclear factor Y, sterol regulatory element and hepatocyte nuclear factor 4γ were identified, while that for Sp1 was shown to be absent in the promoter by both bioinformatic analysis and site-directed mutation. Moreover, after the Sp1-binding site from the fads2 promoter of herbivorous Siganus canaliculatus, the first marine teleost demonstrated to have LC-PUFA biosynthetic ability, was inserted into the corresponding region of E. coioides fads2 promoter, activity was significantly increased. The results provided direct data for the importance of the Sp1-binding site in determining fads2 promoter activity, and indicated that its lack may be a reason for low expression of fads2 and poor LC-PUFA biosynthetic ability in E. coioides.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510842, China
| | - Zhixiang Fu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Yuanyou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510842, China.
| |
Collapse
|
8
|
Roy S, Chakraborty HJ, Kumar V, Behera BK, Rana RS, Babu G. In Silico Structural Studies and Molecular Docking Analysis of Delta6-desaturase in HUFA Biosynthetic Pathway. Anim Biotechnol 2017; 29:161-173. [DOI: 10.1080/10495398.2017.1332639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - R S Rana
- ICAR - Krishi Anusandhan Bhawan I, New Delhi, India
| | | |
Collapse
|
9
|
Cloning and expression characterization of peroxisome proliferator-activated receptors (PPARs) with their agonists, dietary lipids, and ambient salinity in rabbitfish Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 2017; 206:54-64. [PMID: 28095314 DOI: 10.1016/j.cbpb.2017.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/13/2016] [Accepted: 01/12/2017] [Indexed: 11/24/2022]
Abstract
Rabbitfish Siganus canaliculatus is the first marine teleost reported to have the ability of biosynthesizing C20-22 long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and thus provides a model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. To investigate the possible roles of peroxisome proliferator-activated receptors (PPARs), critical transcription factors involved in the regulation of lipid metabolism, in the regulation of LC-PUFA biosynthesis in rabbitfish, the PPAR genes were cloned and their expression characterization with PPAR agonists, dietary lipid resource, and ambient salinity were examined. Three cDNA sequences respectively encoding 477, 516 and 519 amino acids of PPARα, PPARβ, and PPARγ isoforms were obtained. PPARα exhibited a wide tissue expression with its highest levels in the heart and brain; PPARβ was predominantly expressed in the gills, while PPARγ was highly expressed in the intestine and gills. In rabbitfish primary hepatocytes, both the PPAR agonists 2-bromopalmitate (2-Bro) and fenofibrate (FF) increased the expression of PPARγ, SREBP1c and Elovl5, whereas FF depressed the expression of Δ6/Δ5 Fad. Moreover, a higher hepatic PPARβ expression was observed in fish fed diets with vegetable oils (VO) than that with fish oil (FO), in the former the expression of PPARα, PPARβ, and PPARγ were increased at the low ambient salinity (10ppt), where an increasing expression of Δ5/Δ6 Fad, Δ4 Fad and Elovl5 genes was previously reported. These results suggest that PPARs might be involved in the upregulation of LC-PUFA biosynthesis with dietary VO and low ambient salinity in rabbitfish.
Collapse
|
10
|
Nayak M, Saha A, Pradhan A, Samanta M, Giri SS. Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings. Comp Biochem Physiol B Biochem Mol Biol 2016; 205:1-12. [PMID: 27913275 DOI: 10.1016/j.cbpb.2016.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Silver barb (Puntius gonionotus) is considered a promising medium carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of total or partial substitution of dietary fish oil (FO) with linseed oil (LO) on growth, nutrient utilization, whole-body composition, muscle and liver fatty acid composition. Fish (12.1±0.4g of initial body weight) were fed for 60days with five experimental iso-proteinous, iso-lipidic and iso-caloric diets in which FO (control diet) was replaced by 33.3%, 50%, 66.7% and 100% LO. Final weight, weight gain, percent weight gain, SGR decreased linearly (p<0.001) with increasing LO levels in the diets. Dietary LO substitution levels did not significantly (p>0.05) affect the feed conversion ratio (FCR), protein efficiency ratio (PER) and whole body proximate composition. Furthermore, enhanced level of LO increased α-linolenic acid (ALA; 18:3n3) and linoleic acid (LA; 18:2n6) and decreased eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) in muscle and liver. To understand the molecular mechanism of long chain-polyunsaturated fatty acid (LC-PUFA) biosynthesis, we cloned and characterized the fatty acyl Δ6 desaturase (Δ6 fad) cDNA and investigated its expression in various organs/tissues following replacement of FO with LO in the diet. The full-length Δ6 fad cDNA was 2056bp encoding 444 amino acids and was widely expressed in various organs/tissues. Replacement of FO with LO increased the expression of Δ6 fad mRNA in liver, muscle and intestine but no significant difference was found in the brain.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Division of Fish Nutrition and Physiology, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Ashis Saha
- Division of Fish Nutrition and Physiology, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India.
| | - Avinash Pradhan
- Division of Fish Nutrition and Physiology, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- Division of Fish Nutrition and Physiology, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Shiba Shankar Giri
- Division of Fish Nutrition and Physiology, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Kuah MK, Jaya-Ram A, Shu-Chien AC. A fatty acyl desaturase (fads2) with dual Δ6 and Δ5 activities from the freshwater carnivorous striped snakehead Channa striata. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:146-155. [DOI: 10.1016/j.cbpa.2016.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
12
|
Jaya-Ram A, Shu-Chien AC, Kuah MK. Echium oil increased the expression of a Δ4 Fads2 fatty acyl desaturase and the deposition of n-3 long-chain polyunsaturated fatty acid in comparison with linseed oil in striped snakehead (Channa striata) muscle. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1107-1122. [PMID: 26842427 DOI: 10.1007/s10695-016-0201-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.
Collapse
Affiliation(s)
- Annette Jaya-Ram
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Meng-Kiat Kuah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
13
|
Kuah MK, Jaya-Ram A, Shu-Chien AC. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:248-60. [DOI: 10.1016/j.bbalip.2014.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
|
14
|
Xie D, Chen F, Lin S, Wang S, You C, Monroig Ó, Tocher DR, Li Y. Cloning, functional characterization and nutritional regulation of Δ6 fatty acyl desaturase in the herbivorous euryhaline teleost Scatophagus argus. PLoS One 2014; 9:e90200. [PMID: 24594899 PMCID: PMC3940778 DOI: 10.1371/journal.pone.0090200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating Δ6 desaturation activity. Quantitative real-time PCR showed that highest Δ6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of Δ6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts.
Collapse
Affiliation(s)
- Dizhi Xie
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Fang Chen
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Siyuan Lin
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Shuqi Wang
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Cuihong You
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Óscar Monroig
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Yuanyou Li
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
15
|
Ren HT, Zhang GQ, Li JL, Tang YK, Li HX, Yu JH, Xu P. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): Structure characterization, mRNA expression, temperature and nutritional regulation. Gene 2013; 525:11-7. [DOI: 10.1016/j.gene.2013.04.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
16
|
Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: High activity in delta-6 desaturases of marine species. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:206-13. [DOI: 10.1016/j.cbpb.2011.04.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/25/2011] [Accepted: 04/25/2011] [Indexed: 11/19/2022]
|