Tiwari J, Sur S, Naseem A, Rani S, Malik S. Photoperiodic modulation of melatonin receptor and immune genes in migratory redheaded bunting.
Comp Biochem Physiol A Mol Integr Physiol 2023;
279:111381. [PMID:
36724811 DOI:
10.1016/j.cbpa.2023.111381]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The transcriptional regulation of innate immune function across annual life history states (LHS) remains obscure in avian migrants. We, therefore, investigated this in a migratory passerine songbird, redheaded bunting (Emberiza bruniceps), which exhibits long-distance vernal migration from India to Central Asia. We exposed the birds (N = 10) to differential photoperiodic conditions to induce a non-migratory (NM), pre-migratory (PM), migratory (MIG), and refractory (REF) state, and performed gene expression assays of melatonin receptors (MEL1A and MEL1B), and innate immunity-linked genes (IL1B, IL6, TLR4, and NFKB) in spleen and blood. We found a significant reduction in splenic mass and volume, and a parallel increase in fat accumulation, and testicular growth in birds under migratory state. The gene expression assay revealed an upregulation of MEL1A and MEL1B mRNA levels in both the tissues in MIG. Additionally, we found a nocturnal increase of splenic IL1B expression, and IL1B, IL6, and TLR4 expression in the blood. The mRNA expression of melatonin receptors and proinflammatory cytokine showed a positive correlation. These results suggest that melatonin relays the photoperiodic signal to peripheral immune organs, which shows LHS-dependent changes in mRNA expression of immune genes.
Collapse