1
|
Zhang X, Fan Z, Zhang R, Kong X, Liu F, Fang J, Zhang S, Zhang Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. PEST MANAGEMENT SCIENCE 2023; 79:1566-1577. [PMID: 36527705 DOI: 10.1002/ps.7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall webworm, Hyphantria cunea, an invasive forest pest found worldwide, causes serious ecological and economic damage. Currently, the application of chemical pesticides is the most widely used strategy for H. cunea management. However, long-term pesticide use leads to pest resistance, phytotoxicity, human poisoning, and environmental deterioration. RNA interference (RNAi) technology may provide an environmentally friendly and cost-effective option for H. cunea control. However, effective RNAi targets and application methods for H. cunea are lacking. RESULTS We screened and obtained two highly effective RNAi targets, vATPase A (V-type proton ATPase catalytic subunit A) and Rop (Ras opposite), from 23 candidate genes, using initial and repeat screening tests with the double-stranded RNA (dsRNA) injection method. RNAi against these two genes was effective in suppressing each target messenger RNA level and interfering with larval growth, leading to significant larval mortality and pupal abnormality. For massive production of dsRNA and practical application of RNAi technology in H. cunea, transformed bacteria expressing dsRNAs of these two genes were prepared using the L4440 expression vector and HT115 strain of Escherichia coli. Oral administration of bacterially expressed dsRNA targeting vATPase A and Rop genes showed high mortality and the same malformed phenotype as the injection treatment. To further investigate the lethal effects of targeting these two genes on larval development, transcriptome sequencing (RNA-seq) was performed on RNAi samples. The results demonstrated disorders in multiple metabolic pathways, and the expression levels of most genes related to insect cuticle metabolism were significantly different, which may directly threaten insect survival. In addition, some new findings were obtained via RNA-seq analysis; for example, the progesterone-mediated oocyte maturation and oocyte meiosis processes were significantly different after silencing vATPase A, and the insect olfactory protein-related genes were significantly downregulated after dsHcRop treatment. CONCLUSION vATPase A and Rop are two highly effective RNAi-mediated lethal genes in H. cunea that regulate insect growth via multiple metabolic pathways. Oral delivery of bacterially expressed dsRNA specific to vATPase A and Rop can potentially be used for RNAi-based H. cunea management. This is the first study to apply bacteria-mediated RNAi for the control of this invasive pest, which is a major step forward in the application of the RNAi technology in H. cunea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Niu D, Zhao Y, Zhang W. Temperature stress response: A novel important function of Dermatophagoides farinae allergens. Exp Parasitol 2020; 218:108003. [PMID: 32980317 DOI: 10.1016/j.exppara.2020.108003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
Dermatophagoides farinae, an important pathogen, has multiple allergens. However, their expression under physiological conditions are not understood. Our previous RNA-seq showed that allergens of D. farinae were up-regulated under temperature stress, implying that they may be involved in stress response. Here, we performed a comprehensive study. qRT-PCR detection indicated that 26 of the 34 allergens showed differential expression. Der f1 had the most abundant basic expression quantity. Der f 28.0201 (HSP70) and Der f3 had the same regulation pattern in 9 highly expressed transcripts, which only up-regulated at 41 °C and 43 °C, but Der f 28.0201 showed stronger regulation than Der f 3 (19.88-fold vs 6.02-fold). Whereas Der f 1, 2, 7, 21, 22, 27, and 30 were up-regulated under both heat and cold stress, and Der f 27 showed the strongest regulation ability among them. Der f 27 showed more significant up-regulation than Der f 28.0201 under heat stress (23.59-fold vs 19.88-fold), and Der f27 had more obvious up-regulation under cold than heat stress (30.70-fold vs 23.59-fold). The expression of Der f 27, 28.0201 and 1, and D. farinae survival rates significantly decreased following RNAi, indicating the upregulation of these allergens under temperature stress conferred thermo-tolerance or cold-tolerance to D. farinae. In this study, we described for the first time that these allergens have temperature-stress response functions. This new scientific discovery has important clinical value for revealing the more frequent and serious allergic diseases caused by D. farinae during the change of seasons.
Collapse
Affiliation(s)
- DongLing Niu
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - YaE Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - WanYu Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Zinna RA, Gotoh H, Kojima T, Niimi T. Recent advances in understanding the mechanisms of sexually dimorphic plasticity: insights from beetle weapons and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:35-41. [PMID: 29602360 PMCID: PMC5880310 DOI: 10.1016/j.cois.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 05/08/2023]
Abstract
Many traits that are sexually dimorphic, appearing either differently or uniquely in one sex, are also sensitive to an organism's condition. This phenomenon seems to have evolved to limit genetic conflict between traits that are under different selective pressures in each sex. Recent work has shed light on the molecular and developmental mechanisms that govern this condition sensitive growth, and this work has now expanded to encompass both sexual dimorphism as well as conditionally plastic growth, as it seems the two phenomena are linked on a molecular level. In all cases studied the gene doublesex, a conserved regulator of sex differentiation, controls both sexual dimorphism as well as the condition-dependent plastic responses common to these traits. However, the advent of next-generation -omics technologies has allowed researchers to decipher the common and diverged mechanisms of sexually dimorphic plasticity and expand investigations beyond the foundation laid by studies utilizing beetle weapons.
Collapse
Affiliation(s)
- Robert A Zinna
- Center for Insect Science, University of Arizona, Tucson, AZ 85721-0106, United States.
| | - Hiroki Gotoh
- Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takaaki Kojima
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| |
Collapse
|
4
|
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017. [PMID: 28647612 DOI: 10.1016/j.arr.2017.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (APOE) is a member of the vertebrate protein family of exchangeable apolipoproteins that is characterized by amphipathic α-helices encoded by multiple nucleotide tandem repeats. Its equivalent in flying insects - apolipophorin-III - shares structural and functional commonalities with APOE, suggesting the possibility of an evolutionary relationship between the proteins. In contrast to all other known species, human APOE is functionally polymorphic and possesses three major allelic variants (ε4, ε3 and ε2). The present review examines the current knowledge on APOE gene structure, phylogeny and APOE protein topology as well as its human isoforms. The ε4 allele is associated with an increased age-related disease risk but is also the ancestral form. Despite increased mortality in the elderly, ε4 has not become extinct and is the second-most common allele worldwide after ε3. APOE ε4, moreover, shows a non-random geographical distribution, and similarly, the ε2 allele is not homogenously distributed among ethnic populations. This likely suggests the existence of selective forces that are driving the evolution of human APOE isoforms, which may include differential interactions with dietary factors. To that effect, micronutrients such as vitamin D and carotenoids or dietary macronutrient composition are elucidated with respect to APOE evolution.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
5
|
Kim BY, Jin BR. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:6-13. [DOI: 10.1016/j.cbpb.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/15/2022]
|
6
|
Liu QN, Lin KZ, Yang LN, Dai LS, Wang L, Sun Y, Qian C, Wei GQ, Liu DR, Zhu BJ, Liu CL. Molecular characterization of an Apolipophorin-III gene from the Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:155-167. [PMID: 25348706 DOI: 10.1002/arch.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Apolipophorin-III (ApoLp-III) acts in lipid transport, lipoprotein metabolism, and innate immunity in insects. In this study, an ApoLp-III gene of Antheraea pernyi pupae (Ap-ApoLp-III) was isolated and characterized. The full-length cDNA of Ap-ApoLp-III is 687 bp, including a 5'-untranslated region (UTR) of 40 bp, 3'-UTR of 86 bp and an open reading frame of 561 bp encoding a polypeptide of 186 amino acids that contains an Apolipophorin-III precursor domain (PF07464). The deduced Ap-apoLp-III protein sequence has 68, 59, and 23% identity with its orthologs of Manduca sexta, Bombyx mori, and Aedes aegypti, respectively. Phylogenetic analysis showed that the Ap-apoLp-III was close to that of Bombycoidea. qPCR analysis revealed that Ap-ApoLp-III expressed during the four developmental stages and in integument, fat body, and ovaries. After six types of microorganism infections, expression levels of the Ap-ApoLp-III gene were upregulated significantly at different time points compared with control. RNA interference (RNAi) of Ap-ApoLp-III showed that the expression of Ap-ApoLp-III was significantly downregulated using qPCR after injection of E. coli. We infer that the Ap-ApoLp-III gene acts in the innate immunity of A. pernyi.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, P. R.China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Superoxide dismutases, SOD1 and SOD2, play a distinct role in the fat body during pupation in silkworm Bombyx mori. PLoS One 2015; 10:e0116007. [PMID: 25714339 PMCID: PMC4340916 DOI: 10.1371/journal.pone.0116007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/03/2014] [Indexed: 01/10/2023] Open
Abstract
One way that aerobic biological systems counteract the generation of reactive oxygen species (ROS) is with superoxide dismutase proteins SOD1 and SOD2 that metabolize superoxide radicals to molecular oxygen and hydrogen peroxide or scavenge oxygen radicals produced by the extensive oxidation-reduction and electron-transport reactions that occur in mitochondria. We characterized SOD1 and SOD2 of Bombyx mori isolated from the fat body of larvae. Immunological analysis demonstrated the presence of BmSOD1 and BmSOD2 in the silk gland, midgut, fat body, Malpighian tubules, testis and ovary from larvae to adults. We found that BmSOD2 had a unique expression pattern in the fat body through the fifth instar larval developmental stage. The anti-oxidative functions of BmSOD1 and BmSOD2 were assessed by exposing larvae to insecticide rotenone or vasodilator isosorbide dinitrate, which is an ROS generator in BmN4 cells; however, exposure to these compounds had no effect on the expression levels of either BmSOD protein. Next, we investigated the physiological role of BmSOD1 and BmSOD2 under environmental oxidative stress, applied through whole-body UV irradiation and assayed using quantitative RT-PCR, immunoblotting and microarray analysis. The mRNA expression level of both BmSOD1 and BmSOD2 was markedly increased but protein expression level was increased only slightly. To examine the differences in mRNA and protein level due to UV irradiation intensity, we performed microarray analysis. Gene set enrichment analysis revealed that genes in the insulin signaling pathway and PPAR signaling pathway were significantly up-regulated after 6 and 12 hours of UV irradiation. Taken together, the activities of BmSOD1 and BmSOD2 may be related to the response to UV irradiation stress in B. mori. These results suggest that BmSOD1 and BmSOD2 modulate environmental oxidative stress in the cell and have a specific role in fat body of B. mori during pupation.
Collapse
|
8
|
Zhu JY, Ze SZ, Stanley DW, Yang B. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:40-52. [PMID: 25042129 DOI: 10.1002/arch.21179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | | | | | | |
Collapse
|
9
|
Satyavathi VV, Minz A, Nagaraju J. Nodulation: An unexplored cellular defense mechanism in insects. Cell Signal 2014; 26:1753-63. [DOI: 10.1016/j.cellsig.2014.02.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 11/24/2022]
|
10
|
Noh JY, Patnaik BB, Tindwa H, Seo GW, Kim DH, Patnaik HH, Jo YH, Lee YS, Lee BL, Kim NJ, Han YS. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes. Gene 2013; 534:204-17. [PMID: 24200961 DOI: 10.1016/j.gene.2013.10.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor.
Collapse
Affiliation(s)
- Ju Young Noh
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dong Hyun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745 Republic of Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Republic of Korea
| | - Nam Jung Kim
- Division of Applied Entomology, National Academy of Agricultural Science, Rural Development, 61th, Seodun-dong, Gwonseon-gu, Suwon, Gyeonggi-do, 441-853, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
11
|
Ghahramani Seno MM, Gwadry FG, Hu P, Scherer SW. Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. Genome 2013; 56:619-25. [DOI: 10.1139/gen-2013-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuregulins (NRGs) are signaling molecules involved in various cellular and developmental processes. Abnormal expression and (or) genomic variations of some of these molecules, such as NRG1, have been associated with disease conditions such as cancer and schizophrenia. To gain a comprehensive molecular insight into possible pathways/networks regulated by NRG1-alpha, we performed a global expression profiling analysis on lymphoblastoid cell lines exposed to NRG1-alpha. Our data show that this signaling molecule mainly regulates coordinated expression of genes involved in three processes: phosphorylation, acetylation, and alternative splicing. These processes have fundamental roles in proper development and function of various tissues including the central nervous system (CNS)—a fact that may explain conditions associated with NRG1 dysregulations such as schizophrenia. The data also suggest NRG1-alpha regulates genes (FBXO41) and miRNAs (miR-33) involved in cholesterol metabolism. Moreover, RPN2, a gene already shown to be dysregulated in breast cancer cells, is also differentially regulated by NRG1-alpha treatment.
Collapse
Affiliation(s)
- Mohammad M. Ghahramani Seno
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fuad G. Gwadry
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Pingzhao Hu
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Sun Z, Yu J, Wu W, Zhang G. Molecular characterization and gene expression of apolipophorin III from the ghost moth, Thitarodes pui (Lepidoptera, Hepialidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:1-14. [PMID: 22128070 DOI: 10.1002/arch.20456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apolipophorin III (apoLp-III) functions in lipid transport and immune activation in insects. We cloned a cDNA encoding putative apoLp-III from larvae of Thitarodes pui, a host species of Ophiocordyceps sinensis, with great economic importance in the Tibetan Plateau. Excluding a putative signal peptide of the first 20 amino acid residues, the 171-residue mature apoLp-III has a calculated molecular mass of 18,606 Da. T. pui apoLp-III shares little sequence homologies (<36%) with other apoLp-IIIs. Phylogenetic analysis reveals that T. pui apoLp-III belongs to a distinct, early diverging lineage of lepidopteran apoLp-IIIs. Homology modeling of T. pui apoLp-III shows a bundle of five amphipathic α-helices, including a short helix 3'. T. pui apoLp-III was constitutively expressed in larval fat body at lower levels than pupal and adult fat body. Significant induction of apoLp-III expression, associated with strongest nodulation response, was observed in both sixth and eighth instar larvae challenged with Beauveria bassiana conidia at 1 hr after inoculation, compared with saline-injected controls. The inoculation experiment as well as previous field studies revealed the relative susceptibility of the sixth instar to the entomopathogenic fungus. ApoLp-III transcripts in the infected sixth and eighth instars were found to be induced highest 2- and 14.7-fold, respectively, during the first 12 hr. In late-stage infection, the infected susceptible sixth instar showed decrease in apoLp-III expression followed by production of B. bassiana hyphal bodies, whereas the infected eighth instar showed longer lasting increase in the expression. These results suggest that apoLp-III might contribute to T. pui immune response against fungal pathogens.
Collapse
Affiliation(s)
- Zixuan Sun
- State Key Laboratory for Biological Control/Institute of Entomology, Sun Yat-Sen University, Guangzhou, People' Republic of China
| | | | | | | |
Collapse
|