1
|
Yang S, Wu H, He K, Yan T, Zhou J, Zhao LL, Sun JL, Lian WQ, Zhang DM, Du ZJ, Luo W, He Z, Ye X, Li SJ. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1071-1079. [PMID: 30970473 DOI: 10.1016/j.scitotenv.2019.02.236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/12/2023]
Abstract
To study adaptation of largemouth bass (Micropterus salmoides) to hypoxic stress, we investigated physiological responses and lactate metabolism of the fish under acute hypoxia. The objectives of this study were to (a) observe changes in glucose, glycogen, and lactate content; (b) detect the activity of lactate dehydrogenase (LDH) in serum, brain, heart, and liver tissues; and (c) quantify the dynamic gene expression of AMP activated protein kinase alpha (AMPKα), hypoxia-inducible factor-1 alpha (HIF-1α), monocarboxylate transporter 1 (MCT1), monocarboxylate transporter 4 (MCT4), and lactate dehydrogenase-a (LDHa) following exposure to hypoxia. The fish were subjected to two hypoxia stresses (dissolved oxygen [DO] 1.20 ± 0.2 mg/L and 3.50 ± 0.3 mg/L, respectively) for 24 h. Our results showed that hypoxic stress significantly increased the decomposition of liver glycogen and significantly increased the concentration of blood glucose; however, the muscle glycogen content was not significantly decreased, which indicates that liver glycogen was the main energy source under acute hypoxia. Moreover, hypoxia led to accumulation of a large amount of lactic acid in tissues, possibly due to the activity of lactic acid dehydrogenase, but this process was delayed in the heart and brain relative to the liver. Additionally, hypoxia induced the expression of AMPKα, HIF-1α, MCT1, MCT4, and LDHa, suggesting that glycometabolism had switched from aerobic to anaerobic. Our results contribute to a better understanding of the molecular mechanisms of the response to hypoxia in largemouth bass.
Collapse
Affiliation(s)
- S Yang
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - H Wu
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - K He
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - T Yan
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu, Sichuan 611731, China
| | - J Zhou
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu, Sichuan 611731, China.
| | - L L Zhao
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China.
| | - J L Sun
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - W Q Lian
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - D M Zhang
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - Z J Du
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - W Luo
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - Z He
- College of Animal Science and Technology, Sichuan Agricultural University (SICAU), Wenjiang, Chengdu, Sichuan 611130, China
| | - X Ye
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - S J Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
2
|
Ahorukomeye P, Disotuar MM, Gajewiak J, Karanth S, Watkins M, Robinson SD, Flórez Salcedo P, Smith NA, Smith BJ, Schlegel A, Forbes BE, Olivera B, Hung-Chieh Chou D, Safavi-Hemami H. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. eLife 2019; 8:41574. [PMID: 30747102 PMCID: PMC6372279 DOI: 10.7554/elife.41574] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/30/2018] [Indexed: 12/27/2022] Open
Abstract
The fish-hunting marine cone snail Conus geographus uses a specialized venom insulin to induce hypoglycemic shock in its prey. We recently showed that this venom insulin, Con-Ins G1, has unique characteristics relevant to the design of new insulin therapeutics. Here, we show that fish-hunting cone snails provide a rich source of minimized ligands of the vertebrate insulin receptor. Insulins from C. geographus, Conus tulipa and Conus kinoshitai exhibit diverse sequences, yet all bind to and activate the human insulin receptor. Molecular dynamics reveal unique modes of action that are distinct from any other insulins known in nature. When tested in zebrafish and mice, venom insulins significantly lower blood glucose in the streptozotocin-induced model of diabetes. Our findings suggest that cone snails have evolved diverse strategies to activate the vertebrate insulin receptor and provide unique insight into the design of novel drugs for the treatment of diabetes. Insulin is a hormone critical for maintaining healthy blood sugar levels in humans. When the insulin system becomes faulty, blood sugar levels become too high, which can lead to diabetes. At the moment, the only effective treatment for one of the major types of diabetes are daily insulin injections. However, designing fast-acting insulin drugs has remained a challenge. Insulin molecules form clusters (so-called hexamers) that first have to dissolve in the body to activate the insulin receptor, which plays a key role in regulating the blood sugar levels throughout the body. This can take time and can therefore delay the blood-sugar control. In 2015, researchers discovered that the fish-hunting cone snail Conus geographus uses a specific type of insulin to capture its prey – fish. The cone snail releases insulin into the surrounding water and then engulfs its victim with its mouth. This induces dangerously low blood sugar levels in the fish and so makes them an easy target. Unlike the human version, the snail insulin does not cluster, and despite structural differences, can bind to the human insulin receptor. Now, Ahorukomeye, Disotuar et al. – including some of the authors involved in the previous study – wanted to find out whether other fish-hunting cone snails also make insulins and if they differed from the one previously discovered in C. geographus. The insulin molecules were extracted and analyzed, and the results showed that the three cone snail species had different versions of insulin – but none of them formed clusters. Ahorukomeye, Disotuar et al. further revealed that the snail insulins could bind to the human insulin receptors and could also reverse high blood sugar levels in fish and mouse models of the disease. This research may help guide future studies looking into developing fast-acting insulin drugs for diabetic patients. A next step will be to fully understand how snail insulins can be active at the human receptor without forming clusters. Cone snails solved this problem millions of years ago and by understanding how they have done this, researchers are hoping to redesign current diabetic therapeutics. Since the snail insulins do not form clusters and should act faster than currently available insulin drugs, they may lead to better or new diabetes treatments.
Collapse
Affiliation(s)
- Peter Ahorukomeye
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Maria M Disotuar
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Joanna Gajewiak
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Santhosh Karanth
- Molecular Medicine Program, University of Utah, Salt Lake City, United States.,Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, United States
| | - Maren Watkins
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Samuel D Robinson
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Paula Flórez Salcedo
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amnon Schlegel
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.,Molecular Medicine Program, University of Utah, Salt Lake City, United States.,Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, United States.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, United States
| | - Briony E Forbes
- Department of Medical Biochemistry, Flinders University, Bedford Park, Australia
| | - Baldomero Olivera
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah School of Medicine, Salt Lake City, United States.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
3
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Social Regulation of Gene Expression in Threespine Sticklebacks. PLoS One 2015; 10:e0137726. [PMID: 26367311 PMCID: PMC4569571 DOI: 10.1371/journal.pone.0137726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022] Open
Abstract
Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.
Collapse
|