1
|
Moliné MDLP, Aguirre ME, Domínguez E, Moran Giardini P, Fernández NJ, Damiani N, Churio MS, Gende LB. Short communication: Ascorbyl/ascorbate ratio as a marker of oxidative stress in larvae (Apis mellifera) exposed to Paenibacillus larvae. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110896. [PMID: 37640200 DOI: 10.1016/j.cbpb.2023.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Paenibacillus larvae, the causal agent of American foulbrood disease (AFB), affects Apis mellifera larvae and can induce oxidative stress by overproduction of radical oxygen species (ROS). This study aimed to assess the oxidative stress levels in larvae exposed to three different strains of P. larvae through their diet by examining the ascorbyl radical (A) to ascorbate anion (AH¯) ratio. The results revealed that larvae inoculated with P. larvae exhibited a lower value of this index compared to uninoculated ones. Interestingly, the level of A remained constant, while the concentration of AH¯ increased. Said increase correlated with the virulence of the specific P. larvae strain used in the inoculation. These findings suggest a potential link between AH¯ molecules and a defense response in A. mellifera larvae against infection, consistent with their resistance to P. larvae (LD50).
Collapse
Affiliation(s)
- María de la Paz Moliné
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina.
| | - Matias E Aguirre
- Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - Enzo Domínguez
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - Paloma Moran Giardini
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - Natalia J Fernández
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - Natalia Damiani
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - M Sandra Churio
- Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| | - Liesel B Gende
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), CONICET, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
2
|
Jin X, Du X, Liu G, Jin B, Cao K, Chen F, Huang Q. Efficient destruction of basic organo-nitrogenous compounds in liquid hydrocarbon fuel using ascorbic acid/H 2O 2 system under ambient condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132242. [PMID: 37562355 DOI: 10.1016/j.jhazmat.2023.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.
Collapse
Affiliation(s)
- Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
3
|
Chen L, Xie X, Li Y, Xiong H, Li L. Activation mechanism of whey protein isolate mediated by free radicals generated in the ascorbic acid/hydrogen peroxide system. Food Chem 2022; 384:132533. [DOI: 10.1016/j.foodchem.2022.132533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
4
|
Yang J, Qin L, Zhu Y, He C. The regularity of heat-induced free radicals generation and transition of camellia oil. Food Res Int 2022; 157:111295. [DOI: 10.1016/j.foodres.2022.111295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
|
5
|
D'Errico G, Vitiello G, De Tommaso G, Abdel-Gawad FK, Brundo MV, Ferrante M, De Maio A, Trocchia S, Bianchi AR, Ciarcia G, Guerriero G. Electron Spin Resonance (ESR) for the study of Reactive Oxygen Species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring. ENVIRONMENTAL RESEARCH 2018; 165:11-18. [PMID: 29655038 DOI: 10.1016/j.envres.2018.03.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems. OBJECTIVE A non-invasive method for monitoring polluted areas by the quantitative determination of ROS in frog skin biopsy is presented. METHODS We assessed by ESR spectroscopy the ROS level in adult male of Pelophylax bergeri, specie not a risk of extinction, collected from the polluted Sarno River (SA, Italy) basin. The spin-trap ESR method was validated by immunohistochemical analysis of the well-assessed pollution biomarkers cytochrome P450 aromatase 1A (CYP1A) and glutathione S-transferase (GST), and by determining the poly(ADPribose) polymerase (PARP) and GST enzymatic activity. RESULTS ROS concentration in skin samples from frogs collected in the polluted area is significantly higher than that determined for the unpolluted reference area. Immunohistochemical analysis of CYP1A and GST supported the reliability of our approach, even in the absence of evident morphological and ultrastructural differences. PARP activity assay, connected to possible oxidative DNA damage, and the detoxification index by GST enzymatic assay give statistically significant evidence that higher levels of ROS are associated to alterations of the different biomarkers. CONCLUSIONS ROS concentration, measured by ESR on isolated frog skin, through the presented non-lethal method, is a reliable biomarker for toxicity screening and represents a useful basic datum for future modelling studies on environmental monitoring and biodiversity loss prevention.
Collapse
Affiliation(s)
- Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Giuseppe Vitiello
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, I-80125 Naples, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Fagr Kh Abdel-Gawad
- Water Pollution Research Department, Centre of Excellence for Advanced Sciences (CEAS), National Research Centre, El Buhout St., Dokki, ET-12622 Giza, Egypt
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Corso Italia 57, I-95129 Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, I-95123 Catania, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Samantha Trocchia
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Gaetano Ciarcia
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Giulia Guerriero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Via Mezzocannone 16, I-80134 Naples, Italy
| |
Collapse
|
6
|
Guerriero G, D'Errico G, Di Giaimo R, Rabbito D, Olanrewaju OS, Ciarcia G. Reactive oxygen species and glutathione antioxidants in the testis of the soil biosentinel Podarcis sicula (Rafinesque 1810). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18286-18296. [PMID: 28936697 DOI: 10.1007/s11356-017-0098-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/04/2017] [Indexed: 04/16/2023]
Abstract
Important toxicological achievements have been made during the last decades using reptiles. We focus our investigation on gonadal reproductive health of the soil biosentinel Podarcis sicula which is very sensitive to endocrine-disrupting chemicals. The aim of this study is to quantitatively detect, by sensitive microassays, reactive oxygen species and the glutathione antioxidants in the testis and investigate if they are differentially expressed before and after remediation of a site of the "Land of Fires" (Campania, Italy) subject to illicit dumping of unknown material. The oxidative stress level was evaluated by electron spin resonance spectroscopy applying a spin-trapping procedure able to detect products of lipid peroxidation, DNA damage and repair by relative mobility shift, and poly(ADP-ribose) polymerase enzymatic activity, respectively, the expression of glutathione peroxidase 4 transcript by real-time quantitative PCR analysis, the antioxidant glutathione S-transferase, a well-assessed pollution index, by enzymatic assay and the total soluble antioxidant capacity. Experimental evidences from the different techniques qualitatively agree, thus confirming the robustness of the combined experimental approach. Collected data, compared to those from a reference unpolluted site constitute evidence that the reproductive health of this lizard is impacted by pollution exposure. Remediation caused significant reduction of reactive oxygen species and downregulation of glutathione peroxidase 4 mRNAs in correspondence of reduced levels of glutathione S-transferase, increase of antioxidant capacity, and repair of DNA integrity. Taken together, our results indicate directions to define new screening approaches in remediation assessment.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy.
- Interdepartmental Research Center for Environment (I.R.C.Env.), Federico II University, Naples, Italy.
| | - Gerardino D'Errico
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 26, 80126, Naples, Italy
| | - Rossella Di Giaimo
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
| | - Dea Rabbito
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
| | - Oladokun Sulaiman Olanrewaju
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
- School of Ocean Engineering, University Malaysia , Terengganu Kuala Terengganu, Malaysia
| | - Gaetano Ciarcia
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), Federico II University, Naples, Italy
| |
Collapse
|
7
|
Guo Y, Han X, Che H, Li Z, Dong P, Xue C, Zhang T, Wang Y. Synergistic effect of eicosapentaenoic acid-enriched phospholipids and sea cucumber saponin on orotic acid-induced non-alcoholic fatty liver disease in rats. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172182. [PMID: 30109054 PMCID: PMC6083717 DOI: 10.1098/rsos.172182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/05/2018] [Indexed: 05/16/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an increasingly prevalent chronic liver disease all over the world. The present study was undertaken to explore the synergistic effects of sea cucumber saponins (SCS) and eicosapentaenoic acid-enriched phospholipids (EPA-PL) at ratios of 0.5 : 0.5 and 1 : 1 on NAFLD and demonstrate possible protective mechanisms. It was found that the combination of EPA-PL and SCS at half dose exhibited better effects than EPA-PL or SCS alone and the combination of EPA-PL and SCS at full dose in alleviating orotic acid (OA)-induced symptoms including growth parameters, serum parameters and liver function. Further evaluation of the mechanism illustrated that EPA-PL and SCS combination at the ratio of 0.5 : 0.5 could markedly reduce the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase and malic enzyme genes and significantly increase expression of genes relevant to fatty acid β-oxidation including peroxisome proliferator-activated receptor and its target genes (CPT1, CPT2 and ACOX1), suggesting that the protection of the EPA-PL and SCS combination at the ratio of 0.5 : 0.5 against OA-induced NAFLD might be mainly via lipogenesis inhibition and β-oxidation enhancement in the liver. The synergistic effects of EPA-PL and SCS make it possible to reduce the doses of EPA-PL or SCS to avoid side effects, which is of value for the development of dietary supplements or functional foods for preventing or treating NAFLD.
Collapse
Affiliation(s)
- Ying Guo
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Xiuqing Han
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Hongxia Che
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory Marine Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | | | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory Marine Science and Technology, Qingdao, Shandong Province, People's Republic of China
- Authors for correspondence: Yuming Wang e-mail:
| |
Collapse
|
8
|
Liu J, Pu H, Chen C, Liu Y, Bai R, Kan J, Jin C. Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:279-289. [PMID: 29199827 DOI: 10.1021/acs.jafc.7b05135] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ascorbic acid (AA) and hydroxyl peroxide (H2O2) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H2O2 redox pair induced grafting reaction, free radicals generated in the AA/H2O2 redox system were compared with hydroxyl radical (•OH) produced in the Fe2+/H2O2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc•-) was produced in the AA/H2O2 system. The reaction between Asc•- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when •OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc•-. However, CA could be hardly grafted onto CS via •OH. CA-g-CS synthesized through Asc•- exhibited lower thermal stability and crystallinity than the reaction product obtained through •OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H2O2 redox system was mediated by Asc•- rather than •OH.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| | - Huimin Pu
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| | - Chong Chen
- Testing Center, Yangzhou University , Yangzhou, 225009 Jiangsu, China
| | - Yunpeng Liu
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| | - Ruyu Bai
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University , Yangzhou, 225127 Jiangsu, China
| |
Collapse
|
9
|
Piloni NE, Reiteri M, Hernando MP, Cervino CO, Puntarulo S. Differential Effect of Acute Iron Overload on Oxidative Status and Antioxidant Content in Regions of Rat Brain. Toxicol Pathol 2017; 45:1067-1076. [PMID: 29020889 DOI: 10.1177/0192623317734847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hypothesis of this study is that the cerebral cortex, hippocampus, and striatum of the rat brain are differentially affected in terms of oxidative stress and antioxidant capacity by acute Fe overload because Fe is distributed in a heterogeneous fashion among different regions and cells of the brain. The effects on the lipophilic and hydrophilic cellular environment were compared between regions and with the whole brain. A single dose of Fe-dextran increased Fe deposits, reaching a maximum after 6 hr. Both in whole brain and in cortex region, the ascorbyl/ascorbate content ratio was increased after 6 hr of Fe administration, while in striatum and hippocampus, there was no significant changes after Fe overload. Total thiol content decreased in whole brain and cortex, while there were no significant changes in striatum and hippocampus after Fe overload. The content of α-tocopherol (α-T), whether measured in the whole brain or in the isolated regions, did not change following Fe treatment. Lipid radical (LR•) generation rate after Fe-dextran overload only increased in the cortex region. The LR•/α-T content ratio was increased by Fe treatment in cortex but not in the whole brain, striatum, or hippocampus, in agreement with the study tested hypothesis.
Collapse
Affiliation(s)
- Natacha E Piloni
- 1 Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,2 Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Macarena Reiteri
- 3 Facultad de Ciencias de la Salud, Instituto de Neurociencias-Cátedra de Fisiología, Universidad de Morón, Buenos Aires, Argentina
| | - Marcelo P Hernando
- 3 Facultad de Ciencias de la Salud, Instituto de Neurociencias-Cátedra de Fisiología, Universidad de Morón, Buenos Aires, Argentina.,4 Depto Radiobiología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Claudio O Cervino
- 3 Facultad de Ciencias de la Salud, Instituto de Neurociencias-Cátedra de Fisiología, Universidad de Morón, Buenos Aires, Argentina
| | - Susana Puntarulo
- 1 Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,2 Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Glembockyte V, Cosa G. Redox-Based Photostabilizing Agents in Fluorescence Imaging: The Hidden Role of Intersystem Crossing in Geminate Radical Ion Pairs. J Am Chem Soc 2017; 139:13227-13233. [DOI: 10.1021/jacs.7b08134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Viktorija Glembockyte
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801
Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and
Center for Self-Assembled Chemical Structures, McGill University, 801
Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
11
|
Zhou L, Zhao H, Pan T, Trinchi A, Lan M, Wei G. Evaluation of Methanol Induced Free Radicals in Mice Liver. Aust J Chem 2017. [DOI: 10.1071/ch16492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methanol induced oxidative stress (OS) models in mice were successfully established and evaluated by the electron paramagnetic resonance (EPR) spin trapping technique. The capacity for removal of reactive oxygen species (ROS) free radicals by rhubarb and vitamin C (Vc) as candidate materials was also investigated. EPR was employed to determine the free radicals generated from a spin trapping agent, α-phenyl-N-tert-butylnitrone (PBN), that reacted with the ROS. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and the level of malondialdehyde (MDA) were also evaluated by enzyme assays. The results indicated that methanol clearly promoted the generation of ROS free radicals in the liver of mice. The activity of SOD and GSH-PX was reduced significantly, although the level of MDA was increased as a result of the harmful effect of methanol. In addition, rhubarb and Vc exhibited a protective effect on the mice liver under acute OS.
Collapse
|
12
|
González PM, Puntarulo S. Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis. Comp Biochem Physiol A Mol Integr Physiol 2016; 200:79-86. [DOI: 10.1016/j.cbpa.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
|
13
|
Kumara Dhas M, Utsumi H, Jawahar A, Milton Franklin Benial A. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced Magnetic Resonance Imaging (OMRI). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:32-38. [PMID: 26047309 DOI: 10.1016/j.jmr.2015.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
The dynamic nuclear polarization (DNP) studies were carried out for (15)N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities (1.8cP, 7cP and 14cP). The dependence of DNP parameters was demonstrated over a range of agent concentration, viscosities, RF power levels and ESR irradiation time. DNP spectra were also recorded for 2mM concentration of (15)N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities. The DNP factors were measured as a function of ESR irradiation time, which increases linearly up to 2mM agent concentration in pure water and pure water/glycerol mixtures of different viscosities. The DNP factor started declining in the higher concentration region (∼3mM), which is due to the ESR line width broadening. The water proton spin-lattice relaxation time was measured at very low Zeeman field (14.529mT). The increased DNP factor (35%) was observed for solvent 2 (η=1.8cP) compared with solvent 1 (η=1cP). The increase in the DNP factor was brought about by the shortening of water proton spin-lattice relaxation time of solvent 2. The decreased DNP factors (30% and 53%) were observed for solvent 3 (η=7cP) and solvent 4 (η=14cP) compared with solvent 2, which is mainly due to the low value of coupling parameter in high viscous liquid samples. The longitudinal relaxivity, leakage factor and coupling parameter were estimated. The coupling parameter values reveal that the dipolar interaction as the major mechanism. The longitudinal relaxivity increases with the increasing viscosity of pure water/glycerol mixtures. The leakage factor showed an asymptotic increase with the increasing agent concentration. It is envisaged that the results reported here may provide guidelines for the design of new viscosity prone nitroxyl radicals, suited to the biological applications of DNP.
Collapse
Affiliation(s)
- M Kumara Dhas
- Department of Physics, NMSSVN College, Nagamalai, Madurai 625 019, Tamil Nadu, India
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan
| | - A Jawahar
- Department of Chemistry, NMSSVN College, Nagamalai, Madurai 625 019, Tamil Nadu, India
| | | |
Collapse
|
14
|
Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85. [PMID: 24673905 PMCID: PMC9359148 DOI: 10.1016/j.jfda.2014.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials that have been manufactured worldwide and applied in different commercial realms. The well-recognized ability of TiO2 to promote the formation of reactive oxygen species (ROS) has been extensively studied as one of the important mechanisms underlying TiO2 NPs toxicity. As the “gold standard” method to quantify and identify ROS, electron spin resonance (ESR) spectroscopy has been employed in many studies aimed at evaluating TiO2 NPs safety. This review aims to provide a thorough discussion of current studies using ESR as the primary method to unravel the mechanism of TiO2 NPs toxicity. ESR spin label oximetry and immune-spin trapping techniques are also briefly introduced, because the combination of spin trapping/labeling techniques offers a promising tool for studying the oxidative damage caused by TiO2 NPs.
Collapse
Affiliation(s)
- Meng Li
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Joyner-Matos J, Puntarulo S, Vázquez-Medina JP, Zenteno-Savín T. Oxidative stress in aquatic ecosystems: selected papers from the First International Conference. Preface. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:381-3. [PMID: 23608366 DOI: 10.1016/j.cbpa.2013.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|