1
|
Dranchak PK, Oliphant E, Queme B, Lamy L, Wang Y, Huang R, Xia M, Tao D, Inglese J. In vivo quantitative high-throughput screening for drug discovery and comparative toxicology. Dis Model Mech 2023; 16:dmm049863. [PMID: 36786055 PMCID: PMC10067442 DOI: 10.1242/dmm.049863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Quantitative high-throughput screening (qHTS) pharmacologically evaluates chemical libraries for therapeutic uses, toxicological risk and, increasingly, for academic probe discovery. Phenotypic high-throughput screening assays interrogate molecular pathways, often relying on cell culture systems, historically less focused on multicellular organisms. Caenorhabditis elegans has served as a eukaryotic model organism for human biology by virtue of genetic conservation and experimental tractability. Here, a paradigm enabling C. elegans qHTS using 384-well microtiter plate laser-scanning cytometry is described, in which GFP-expressing organisms revealing phenotype-modifying structure-activity relationships guide subsequent life-stage and proteomic analyses, and Escherichia coli bacterial ghosts, a non-replicating nutrient source, allow compound exposures over two life cycles, mitigating bacterial overgrowth complications. We demonstrate the method with libraries of anti-infective agents, or substances of toxicological concern. Each was tested in seven-point titration to assess the feasibility of nematode-based in vivo qHTS, and examples of follow-up strategies were provided to study organism-based chemotype selectivity and subsequent network perturbations with a physiological impact. We anticipate that this qHTS approach will enable analysis of C. elegans orthologous phenotypes of human pathologies to facilitate drug library profiling for a range of therapeutic indications.
Collapse
Affiliation(s)
- Patricia K. Dranchak
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erin Oliphant
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Bryan Queme
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Laurence Lamy
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yuhong Wang
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ruili Huang
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Menghang Xia
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - James Inglese
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817, USA
| |
Collapse
|
2
|
Hoffman CS. Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Front Pharmacol 2022; 12:833156. [PMID: 35111072 PMCID: PMC8802716 DOI: 10.3389/fphar.2021.833156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) have been proven to be targets for which highly selective and potent drugs can be developed. Mammalian genomes possess 21 genes whose products are pharmacologically grouped into 11 families; however related genes from pathogenic organisms display sufficient divergence from the mammalian homologs such that PDE inhibitors to these enzymes could be used to treat parasitic infections without acting on the related human PDEs. We have developed a platform for expressing cloned PDEs in the fission yeast Schizosaccharomyces pombe, allowing for inexpensive, but robust screening for small molecule inhibitors that are cell permeable. Such compounds typically display the expected biological activity when tested in cell culture, including anti-inflammatory properties for PDE4 and PDE7 inhibitors. The genetic pliability of S. pombe also allows for molecular genetic screens to identify mutations in target PDE genes that confer some resistance to these inhibitors as a way of investigating the PDE-inhibitor interaction. This screening method is readily accessible to academic laboratories as it does not require the purification of large quantities of a target protein. This allows for the discovery and profiling of PDE inhibitors to treat inflammation or of inhibitors of targets such as pathogen PDEs for which there may not be a sufficient financial motivation for pharmaceutical companies to identify selective PDE inhibitors using more traditional in vitro enzyme-based screening methods.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
3
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Data-analysis strategies for image-based cell profiling. Nat Methods 2017; 14:849-863. [PMID: 28858338 PMCID: PMC6871000 DOI: 10.1038/nmeth.4397] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.
Collapse
|
5
|
Schuck BW, MacArthur R, Inglese J. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 79:5.32.1-5.32.27. [PMID: 28398644 PMCID: PMC5510169 DOI: 10.1002/cpns.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reporter-biased artifacts-i.e., compounds that interact directly with the reporter enzyme used in a high-throughput screening (HTS) assay and not the biological process or pharmacology being interrogated-are now widely recognized to reduce the efficiency and quality of HTS used for chemical probe and therapeutic development. Furthermore, narrow or single-concentration HTS perpetuates false negatives during primary screening campaigns. Titration-based HTS, or quantitative HTS (qHTS), and coincidence reporter technology can be employed to reduce false negatives and false positives, respectively, thereby increasing the quality and efficiency of primary screening efforts, where the number of compounds investigated can range from tens of thousands to millions. The three protocols described here allow for generation of a coincidence reporter (CR) biocircuit to interrogate a biological or pharmacological question of interest, generation of a stable cell line expressing the CR biocircuit, and qHTS using the CR biocircuit to efficiently identify high-quality biologically active small molecules. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brittany W Schuck
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Vasaikar S, Bhatia P, Bhatia PG, Chu Yaiw K. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets. Biomedicines 2016; 4:E27. [PMID: 28536394 PMCID: PMC5344266 DOI: 10.3390/biomedicines4040027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.
Collapse
Affiliation(s)
- Suhas Vasaikar
- Integrative Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Pooja Bhatia
- School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Partap G Bhatia
- Department of Pharmaceutics and Pharmaceutical Microbiology, Usmanu Danfodiyo University, Sokoto 840231, Nigeria.
| | - Koon Chu Yaiw
- Experimental Cardiovascular Research Unit, Department of Medicine-Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
7
|
Klumpp M. Non-stoichiometric inhibition in integrated lead finding - a literature review. Expert Opin Drug Discov 2015; 11:149-62. [PMID: 26653534 DOI: 10.1517/17460441.2016.1128892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Non-stoichiometric inhibition summarizes different mechanisms by which low-molecular weight compounds can reproducibly inhibit high-throughput screening (HTS) and other lead finding assays without binding to a structurally defined site on their molecular target. This disqualifies such molecules from optimization by medicinal chemistry, and therefore their rapid elimination from screening hit lists is essential for productive and effective drug discovery. AREAS COVERED This review covers recent literature that either investigates the various mechanisms behind non-stoichiometric inhibition or suggests assays and readouts to identify them. In addition, combination of the various methods to distill promising molecules out of raw primary hit lists step-by-step is considered. Emerging technologies to demonstrate target engagement in cells are also discussed. EXPERT OPINION Over the last few years, awareness of non-stoichiometric inhibitors within screening libraries and HTS hit lists has considerably increased, not only in the pharmaceutical industry but also in the academic drug discovery community. This has resulted in a variety of methods to detect and handle such compounds. These range from in silico approaches to flag suspicious compounds, and counterassays to measure non-stoichiometric inhibition, to biophysical methods that positively demonstrate stoichiometric binding. In addition, novel technologies to verify target engagement within cells are becoming available. While still a time- and resource-consuming nuisance, non-stoichiometric inhibitors therefore do not fundamentally jeopardize the discovery of low molecular weight lead and drug candidates. Rather, they should be viewed as a manageable issue that with appropriate expertise can be overcome through integration of the above-mentioned approaches.
Collapse
Affiliation(s)
- Martin Klumpp
- a Novartis Institute of Biomedical Research Basel, Novartis Pharma AG , Basel , Switzerland
| |
Collapse
|
8
|
Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A, Kuruvilla R, Li RJ, Shim JS, Liu JO, Parsons MJ, Mumm JS. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. eLife 2015; 4:e08261. [PMID: 26218223 PMCID: PMC4534842 DOI: 10.7554/elife.08261] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022] Open
Abstract
Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.
Collapse
Affiliation(s)
- Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Surendra K Rajpurohit
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Fabien Delaspre
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Steven L Walker
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - David T White
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Ruo-jing Li
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
| | - Joong S Shim
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jun O Liu
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
- Department of Oncology, Johns Hopkins University, Baltimore, United States
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Jeff S Mumm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| |
Collapse
|
9
|
Increasing the delivery of next generation therapeutics from high throughput screening libraries. Curr Opin Chem Biol 2015; 26:104-10. [PMID: 25909818 DOI: 10.1016/j.cbpa.2015.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
The pharmaceutical industry has historically relied on high throughput screening as a cornerstone to identify chemical equity for drug discovery projects. However, with pharmaceutical companies moving through a phase of diminished returns and alternative hit identification strategies proving successful, it is more important than ever to understand how this approach can be used more effectively to increase the delivery of next generation therapeutics from high throughput screening libraries. There is a wide literature that describes HTS and fragment based screening approaches which offer clear direction on the process for these two distinct activities. However, few people have considered how best to identify medium to low molecular weight compounds from large diversity screening sets and increase downstream success.
Collapse
|
10
|
Dahlin JL, Inglese J, Walters MA. Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov 2015; 14:279-94. [PMID: 25829283 PMCID: PMC6002840 DOI: 10.1038/nrd4578] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of academic drug discovery centres has grown considerably in recent years, providing new opportunities to couple the curiosity-driven research culture in academia with rigorous preclinical drug discovery practices used in industry. To fully realize the potential of these opportunities, it is important that academic researchers understand the risks inherent in preclinical drug discovery, and that translational research programmes are effectively organized and supported at an institutional level. In this article, we discuss strategies to mitigate risks in several key aspects of preclinical drug discovery at academic drug discovery centres, including organization, target selection, assay design, medicinal chemistry and preclinical pharmacology.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - James Inglese
- 1] National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, USA. [2] National Human Genome Research Institute, Bethesda, Maryland, 20892, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota Twin Cities, 717 Delaware St SE, Room 609, Minneapolis, Minnesota 55414, USA
| |
Collapse
|
11
|
Practical strategies for small-molecule probe development in chemical biology. Methods Mol Biol 2015. [PMID: 25618348 DOI: 10.1007/978-1-4939-2269-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The effective identification, selection, and implementation of small molecules for the interrogation of biological systems require an intricate understanding of the chemical principles underlying their cellular activities. While much has been published regarding the use of screening techniques in forward chemical genetics platforms and on small-molecule target identification, less emphasis has been placed on detailed strategies for evaluating, selecting, and optimizing screening hits. This chapter provides practical tools for identifying and developing promising screening hit compounds into effective tools for biological discovery.
Collapse
|
12
|
Kulak O, Yamaguchi K, Lum L. Identification of therapeutic small-molecule leads in cultured cells using multiplexed pathway reporter readouts. Methods Mol Biol 2015; 1263:3-14. [PMID: 25618332 DOI: 10.1007/978-1-4939-2269-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid expansion of molecular screening libraries in size and complexity in the last decade has outpaced the discovery rate of cost-effective strategies to single out reagents with sought-after cellular activities. In addition to representing high-priority therapeutic targets, intensely studied cell signaling systems encapsulate robust reference points for mapping novel chemical activities given our deep understanding of the molecular mechanisms that support their activity. In this chapter, we describe strategies for using transcriptional reporters of several well-interrogated signal transduction pathways coupled with high-throughput biochemical assays to fingerprint novel compounds for drug target identification agendas.
Collapse
Affiliation(s)
- Ozlem Kulak
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. NL07.138B, Dallas, TX, 75390-9039, USA
| | | | | |
Collapse
|
13
|
Lucas X, Günther S. Using chiral molecules as an approach to address low-druggability recognition sites. J Comput Chem 2014; 35:2114-21. [PMID: 25223950 DOI: 10.1002/jcc.23726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 11/07/2022]
Abstract
The content of chiral carbon atoms or structural complexity, which is known to correlate well with relevant physicochemical properties of small molecules, represents a promising descriptor that could fill the gap in existing drug discovery between ligand library filtering rules and the corresponding properties of the target's recognition site. Herein, we present an in silico study on the yet unclear underlying correlations between molecular complexity and other more sophisticated physicochemical and biological properties. By analyzing thousands of protein-ligand complexes from DrugBank, we show that increasing molecular complexity of drugs is an approach to addressing particularly low-druggability and polar recognition sites. We also show that biologically relevant protein classes characteristically bind molecules with a certain degree of structural complexity. Three distinct behaviors toward drug recognition are described. The reported results set the basis for a better understanding of protein-drug recognition, and open the possibility of including target information in the filtering of large ligand libraries for screening.
Collapse
Affiliation(s)
- Xavier Lucas
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Germany
| | | |
Collapse
|
14
|
Li J, Yuan J, Cheng KCC, Inglese J, Su XZ. Chemical genomics for studying parasite gene function and interaction. Trends Parasitol 2013; 29:603-11. [PMID: 24215777 DOI: 10.1016/j.pt.2013.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
With the development of new technologies in genome sequencing, gene expression profiling, genotyping, and high-throughput screening of chemical compound libraries, small molecules are playing increasingly important roles in studying gene expression regulation, gene-gene interaction, and gene function. Here we briefly review and discuss some recent advancements in drug target identification and phenotype characterization using combinations of high-throughput screening of small-molecule libraries and various genome-wide methods such as whole-genome sequencing, genome-wide association studies (GWAS), and genome-wide expression analysis. These approaches can be used to search for new drugs against parasite infections, to identify drug targets or drug resistance genes, and to infer gene function.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Jhoti H, Rees S, Solari R. High-throughput screening and structure-based approaches to hit discovery: is there a clear winner? Expert Opin Drug Discov 2013; 8:1449-53. [DOI: 10.1517/17460441.2013.857654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|