1
|
Ruan ML, Ni WX, Chu JCH, Lam TL, Law KC, Zhang Y, Yang G, He Y, Zhang C, Fung YME, Liu T, Huang T, Lok CN, Chan SLF, Che CM. Iridium(III) carbene complexes as potent girdin inhibitors against metastatic cancers. Proc Natl Acad Sci U S A 2024; 121:e2316615121. [PMID: 38861602 PMCID: PMC11194514 DOI: 10.1073/pnas.2316615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 μM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.
Collapse
Affiliation(s)
- Mei-Ling Ruan
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Jacky C. H. Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Chung Law
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiwei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guanya Yang
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Ying He
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Chunlei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Chun-Nam Lok
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sharon Lai-Fung Chan
- Department of Applied Biology and Chemical Biology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Katkova SA, Bunev AS, Gasanov RE, Khochenkov DA, Kulsha AV, Ivashkevich OA, Serebryanskaya TV, Kinzhalov MA. Metal-(Acyclic Diaminocarbene) Complexes Demonstrate Nanomolar Antiproliferative Activity against Triple-Negative Breast Cancer. Chemistry 2024; 30:e202400101. [PMID: 38363795 DOI: 10.1002/chem.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Hydrolytically stable PdII and PtII complexes supported by acyclic diaminocarbene ligands represent a novel class of structural organometallic anticancer agents exhibiting nanomolar antiproliferative activity in a panel of cancer cell lines (IC50 0.07-0.81 μM) and up to 300-fold selectivity for cancer cells over normal primary fibroblasts. The lead drug candidate was 300 times more potent than cisplatin in vitro and showed higher efficacy in reducing the growth of aggressive MDA-MB-231 xenograft tumors in mice.
Collapse
Affiliation(s)
- Svetlana A Katkova
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| | - Alexander S Bunev
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
| | - Rovshan E Gasanov
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
| | - Dmitry A Khochenkov
- Medicinal Chemistry Center, Togliatti State University, Belorusskaya 14, Togliatti, 445020, Russian Federation
- Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478, Moscow, Russian Federation
| | - Andrey V Kulsha
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Oleg A Ivashkevich
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Tatiyana V Serebryanskaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| |
Collapse
|
3
|
Wang W, Wang L, Zhang Y, Shi Y, Zhang R, Chen L, Shi Z, Yuan S, Li X, He C, Li X. Chiral Iridium-Based TLD-1433 Analogues: Exploration of Enantiomer-Dependent Behavior in Photodynamic Cancer Therapy. Inorg Chem 2024; 63:7792-7798. [PMID: 38619892 DOI: 10.1021/acs.inorgchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.
Collapse
Affiliation(s)
- Wen Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yangming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Liyong Chen
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Zhuolin Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shuai Yuan
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Xiaoxi Li
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xuezhao Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| |
Collapse
|
4
|
Casini A, Pöthig A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS CENTRAL SCIENCE 2024; 10:242-250. [PMID: 38435529 PMCID: PMC10906246 DOI: 10.1021/acscentsci.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
The discovery of the medicinal properties of platinum complexes has fueled the design and synthesis of new anticancer metallodrugs endowed with unique modes of action (MoA). Among the various families of experimental antiproliferative agents, organometallics have emerged as ideal platforms to control the compounds' reactivity and stability in a physiological environment. This is advantageous to efficiently deliver novel prodrug activation strategies, as well as to design metallodrugs acting only via noncovalent interactions with their pharmacological targets. Noteworthy, another justification for the advance of organometallic compounds for therapy stems from their ability to catalyze bioorthogonal reactions in cancer cells. When not yet ideal as drug leads, such compounds can be used as selective chemical tools that benefit from the advantages of catalytic amplification to either label the target of interest (e.g., proteins) or boost the output of biochemical signals. Examples of metallodrugs for the so-called "catalysis in cells" are considered in this Outlook together with other organometallic drug candidates. The selected case studies are discussed in the frame of more general challenges in the field of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstraße 4, D-85748 Garching b. München, Germany
| | - Alexander Pöthig
- Catalysis
Research Center & Department of Chemistry, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, D-85748 Garching b. München, Germany
| |
Collapse
|
5
|
Wang H, Fan X, Xie PP, Yang S, Pigeon P, Xiong Y, Gai S, Qi X, Wang J, Zhang Q, Li W, Qian H, McGlinchey MJ, Jaouen G, Zheng C, Wang Y. Deciphering the Diversified Metabolic Behavior of Hydroxyalkyl Ferrocidiphenols as Anticancer Complexes. J Med Chem 2024; 67:1209-1224. [PMID: 38156614 DOI: 10.1021/acs.jmedchem.3c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of in vitro and in vivo experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and in cellulo and in vivo metabolism studies. In view of this phenomenon, unprecedented chemo-evolutionary sequences that connect all the ferrocidiphenol-related intermediates and analogues have been established. In addition, a comprehensive density functional theory (DFT) study has been performed to decipher the metabolic diversification profiles of these complexes and demonstrate the delicate modulation of carbenium ions by the ferrocenyl moiety, via either α- or β-positional participation.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shuang Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pascal Pigeon
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Susu Gai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Wei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Huimei Qian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Michael J McGlinchey
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 C1P1, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| |
Collapse
|
6
|
Wang L, Wang X, Chen F, Song YQ, Nao SC, Chan DSH, Wong CY, Wang W, Leung CH. A glycyrrhetinic acid-iridium(III) conjugate as a theranostic NIR probe for hepatocellular carcinoma with mitochondrial-targeting ability. Eur J Med Chem 2024; 264:115995. [PMID: 38043488 DOI: 10.1016/j.ejmech.2023.115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
7
|
Hakkennes MA, Buda F, Bonnet S. MetalDock: An Open Access Docking Tool for Easy and Reproducible Docking of Metal Complexes. J Chem Inf Model 2023; 63:7816-7825. [PMID: 38048559 PMCID: PMC10751784 DOI: 10.1021/acs.jcim.3c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
Despite the proven potential of metal complexes as therapeutics, the lack of computational tools available for the high-throughput screening of their interactions with proteins is a limiting factor toward clinical developments. To address this challenge, we introduce MetalDock, an easy-to-use, open access docking software for docking metal complexes to proteins. Our tool integrates the AutoDock docking engine with three well-known quantum software packages to automate the docking of metal-organic complexes to proteins. We used a Monte Carlo sampling scheme to obtain the missing Lennard-Jones parameters for 12 metal atom types and demonstrated that these parameters generalize exceptionally well. Our results show that the poses obtained by MetalDock are highly accurate, as they predict the binding geometries experimentally determined by crystal structures with high spatial reproducibility. Three different case studies are presented that demonstrate the versatility of MetalDock for the docking of diverse metal-organic compounds to different biomacromolecules, including nucleic acids.
Collapse
Affiliation(s)
- Matthijs
L. A. Hakkennes
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Yang PX, Xie K, Chen MR, Zhang Z, Huang B, Li RT, Ye RR. Synthesis, Characterization, and Antitumor Mechanism Investigation of Ruthenium(II)/Rhenium(I)-Daminozide Conjugates. INORGANICS 2023. [DOI: 10.3390/inorganics11040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Daminozide, a plant growth regulator, is an effective inhibitor of the Jumonji domain-containing protein (JMJD) histone demethylase. Herein, four ruthenium(II)/rhenium(I)-daminozide conjugates, with molecular formulas [Ru(N-N)2bpy(4-CH2OH-4′-CH2O-daminozide)](PF6)2 (Ru-1/Ru-2) (N-N = 1,10-phenanthroline (phen, in Ru-1) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-2)) and Re(N-N)(CO)3(PyCH2O-daminozide) (Re-1/Re-2) (Py = pyridine, N-N = phen (in Re-1) and DIP (in Re-2)), were synthesized and characterized. Among these complexes, Ru-2 and Re-2 exhibited higher cytotoxicity against tumor cells than cisplatin. Upregulation of H3K9Me3 expression level was found in human cervical cancer cells (HeLa) treated with Ru-2 and Re-2, indicating that these two complexes can inhibit the activity of JMJD histone demethylase. Further investigation revealed that Re-2 can selectively accumulate in the mitochondria of HeLa cells. Both Ru-2 and Re-2 can cause mitochondrial damage, induce apoptosis, and inhibit cell migration and colony formation of HeLa cells. Overall, these complexes exhibit multiple anticancer functions, including inhibiting JMJD, inducing apoptosis, and inhibiting cell invasion, making them promising candidates for anticancer drugs.
Collapse
|
9
|
Beirne DF, Dalla Via M, Velasco-Torrijos T, Montagner D. Metal-Tyrosine Kinase Inhibitors: Targeted metal-drug conjugates. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Scarpi-Luttenauer M, Galentino K, Orvain C, Cecchini M, Gaiddon C, Mobian P. TiO4N2 complexes formed with 1,10-phenanthroline ligands containing a donor-acceptor hydrogen bond site: synthesis, cytotoxicity and docking experiments. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Maliszewska HK, Arnau Del Valle C, Xia Y, Marín MJ, Waller ZAE, Muñoz MP. Precious metal complexes of bis(pyridyl)allenes: synthesis and catalytic and medicinal applications. Dalton Trans 2021; 50:16739-16750. [PMID: 34761768 DOI: 10.1039/d1dt02929k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of donor-type substituents on the allene core opens up the possibility of coordination complexes in which the metal is bonded to the donor groups, with or without interaction with the double bond system. Despite the challenges in the synthesis of such allene-containing metal complexes, their unique 3D environments and dual functionality (allene and metal) could facilitate catalysis and interaction with chemical and biological systems. Bis(pyridyl)allenes are presented here as robust ligands for novel Pd(II), Pt(IV) and Au(III) complexes. Their synthesis, characterisation and first application as catalysts of benchmark reactions for Pd, Pt and Au are presented with interesting reactivity and selectivities. The complexes have also been probed as antimicrobial and anticancer agents with promising activities, and the first studies on their unusual interaction with several DNA structures will open new avenues for research in the area of metallodrugs with new mechanisms of action.
Collapse
Affiliation(s)
- Hanna K Maliszewska
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ying Xia
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
14
|
Synthesis and characterization for new Mn(II) complexes; conductometry, DFT, antioxidant activity via enhancing superoxide dismutase enzymes that confirmed by in-silico and in-vitro ways. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Loreto D, Merlino A. The interaction of rhodium compounds with proteins: A structural overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Roy S, Rangasamy L, Nouar A, Koenig C, Pierroz V, Kaeppeli S, Ferrari S, Patra M, Gasser G. Synthesis and Biological Evaluation of Metallocene-Tethered Peptidyl Inhibitors of CDC25. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saonli Roy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Loganathan Rangasamy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Assia Nouar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christiane Koenig
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Kaeppeli
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Malay Patra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Laboratory of Medicinal Chemistry and Cell Biology, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| |
Collapse
|
17
|
Kim JH, Ofori S, Parkin S, Vekaria H, Sullivan PG, Awuah SG. Anticancer gold(iii)-bisphosphine complex alters the mitochondrial electron transport chain to induce in vivo tumor inhibition. Chem Sci 2021; 12:7467-7479. [PMID: 34163837 PMCID: PMC8171344 DOI: 10.1039/d1sc01418h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023] Open
Abstract
Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents. To access an excellent repository of metal-based compounds for probe/drug discovery, we capitalized on the rich chemistry of gold to create organometallic gold(iii) compounds by ligand tuning. We obtained novel organogold(iii) compounds bearing a 1,2-bis(diphenylphosphino)benzene ligand, providing structural diversity with optimal physiological stability. Biological evaluation of the lead compound AuPhos-89 demonstrates mitochondrial complex I-mediated alteration of the mitochondrial electron transport chain (ETC) to drive respiration and diminish cellular energy in the form of adenosine triphosphate (ATP). Mechanism-of-action efforts, RNA-Seq, quantitative proteomics, and NCI-60 screening reveal a highly potent anticancer agent that modulates mitochondrial ETC. AuPhos-89 inhibits the tumor growth of metastatic triple negative breast cancer and represents a new strategy to study the modulation of mitochondrial respiration for the treatment of aggressive cancer and other disease states where mitochondria play a pivotal role in the pathobiology.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
- Lexington Veterans' Affairs Healthcare System USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
| |
Collapse
|
18
|
Platinum(II) N-heterocyclic carbene complexes arrest metastatic tumor growth. Proc Natl Acad Sci U S A 2021; 118:2025806118. [PMID: 33883283 DOI: 10.1073/pnas.2025806118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.
Collapse
|
19
|
Sohrabi M, Saeedi M, Larijani B, Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur J Med Chem 2021; 216:113308. [PMID: 33713976 DOI: 10.1016/j.ejmech.2021.113308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Unique structure, characteristic reactivity, and facile synthesis of metal complexes have made them efficient ligands in drug development research. Among them, rhodium complexes have a limited history and there are a few discussions about their biological activities documented in the literature. However, investigation of kinetically inert rhodium complexes has recently attracted lots of attention and especially there are various evidences on their anti-cancer activity. It seems that they can be investigated as a versatile surrogates or candidates for the existing drugs which do not affect selectively or suffer from various side effects. In recent years, there has been an increasing interest in the use of mononuclear rhodium (III) organometallo drugs due to its versatile structurally important aspects to inhibit various enzymes. It has been demonstrated that organometallic Rh complexes profiting from both organic and inorganic aspects have shown more potent biological activities than classical inorganic compartments. In this respect, smart design, use of the appropriate organic ligands, and efficient and user-friendly synthesis of organometallic Rh complexes have played crucial roles in the inducing desirable biological activities. In this review, we focused on the recent advances published on the bioactivity of Rh (III/II/I) complexes especially inhibitory activity, from 2013 till now. Accordingly, considering the structure-activity relationship (SAR), the effect of oxidation state (+1, +2, and +3) and geometry (dimer or monomer complexes with coordination number of 4 and 6) of Rh complexes as well as various ligands on in vitro and in vivo studies was comprehensively discussed.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ong YC, Gasser G. Organometallic compounds in drug discovery: Past, present and future. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:117-124. [PMID: 34895650 DOI: 10.1016/j.ddtec.2019.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 06/14/2023]
Abstract
In this review, we present an overview of some of the medicinally-relevant organometallic drugs that have been used in the past or that are currently in clinical trials as well as an example of compounds that are currently in the initial stage of drug development. Three main classes of organometallic complexes have been chosen for discussion: antimicrobial organoarsenicals, antimalarial and anticancer ferrocene-containing compounds and anticancer catalytic organometallic complexes. The purpose of this review is to provide readers with a focus on the significant progress that has been made for each of these respective fields of medicine.
Collapse
Affiliation(s)
- Yih Ching Ong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.
| |
Collapse
|
21
|
Basu Baul TS, Addepalli MR, Duthie A, Singh P, Koch B, Gildenast H, Englert U, Rojas‐León I, Höpfl H. Triorganotin(IV) derivatives with semirigid heteroditopic hydroxo‐carboxylato ligands: Synthesis, characterization, and cytotoxic properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tushar S. Basu Baul
- Centre for Advanced Studies in Chemistry North‐Eastern Hill University Shillong India
| | | | - Andrew Duthie
- School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Priya Singh
- Genotoxicology and Cancer Biology Lab, Department of Zoology Banaras Hindu University Varanasi India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology Banaras Hindu University Varanasi India
| | - Hans Gildenast
- Institut für Anorganische Chemie RWTH Aachen University Aachen Germany
| | - Ulli Englert
- Institut für Anorganische Chemie RWTH Aachen University Aachen Germany
| | - Irán Rojas‐León
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| |
Collapse
|
22
|
Huang S, Luo H, Su W, Xiao Q, Xie J. Comparative study of binding interactions between three organometallic rhodium(III) complexes with curcuminoid ligands and human serum albumin. J Mol Recognit 2020; 34:e2876. [PMID: 32974948 DOI: 10.1002/jmr.2876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/06/2022]
Abstract
Organometallic rhodium(III) complexes with curcuminoid ligands attracted considerable attention in biological-related fields and the variation of curcuminoid ligands may regulate the biological activity of these organometallic rhodium(III) complexes. To deeply evaluate the biological influences of these complexes, the binding interactions between three rhodium(III) complexes with curcuminoid ligands and human serum albumin (HSA) were comparably investigated by spectroscopic and electrochemical techniques. The results suggested that the intrinsic fluorescence of HSA was quenched by three complexes through static fluorescence quenching mode. Three complexes bonded with Sudlow's site I of HSA to form ground-state compounds under the binding forces of van der Waals interactions, hydrogen bonds formation, and protonation. Finally, the native conformational structure and the thermal stability of HSA were all changed. Space steric hindrance of complexes took part in the differences of the fluorescence quenching processes, and the chemical polarity of the complexes played a vital role in the variations of the structure and biological activity of HSA. These results illustrated the molecular interactions between protein and organometallic rhodium(III) complexes with curcuminoid ligands, offering new insight about the prospective applications of analogical rhodium(III) complexes in biomedicine areas.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| | - Jiangning Xie
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, P. R. China
| |
Collapse
|
23
|
Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. J Biol Inorg Chem 2020; 25:685-704. [PMID: 32676771 DOI: 10.1007/s00775-020-01803-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies. In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.
Collapse
|
24
|
Anticancer Ruthenium Complexes with HDAC Isoform Selectivity. Molecules 2020; 25:molecules25102383. [PMID: 32455529 PMCID: PMC7287671 DOI: 10.3390/molecules25102383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes have emerged as an important class of molecular targets in cancer therapy, with five inhibitors in clinical use. Recently, it has been shown that a lack of selectivity between the 11 Zn-dependent HDAC isoforms may lead to unwanted side-effects. In this paper, we show that piano stool Ru complexes can act as HDAC inhibitors, and variation in the capping arene leads to differences in HDAC isoform selectivity.
Collapse
|
25
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Notaro A, Frei A, Rubbiani R, Jakubaszek M, Basu U, Koch S, Mari C, Dotou M, Blacque O, Gouyon J, Bedioui F, Rotthowe N, Winter RF, Goud B, Ferrari S, Tharaud M, Řezáčová M, Humajová J, Tomšík P, Gasser G. Ruthenium(II) Complex Containing a Redox-Active Semiquinonate Ligand as a Potential Chemotherapeutic Agent: From Synthesis to In Vivo Studies. J Med Chem 2020; 63:5568-5584. [PMID: 32319768 DOI: 10.1021/acs.jmedchem.0c00431] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Angelo Frei
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.,Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Uttara Basu
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Severin Koch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mazzarine Dotou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jérémie Gouyon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Fethi Bedioui
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Nils Rotthowe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Bruno Goud
- Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| | - Mickaël Tharaud
- Université de Paris, Institut de physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Jana Humajová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, 150 06 Prague, Czech Republic
| | - Pavel Tomšík
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| |
Collapse
|
27
|
An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols. Proc Natl Acad Sci U S A 2020; 117:1321-1329. [PMID: 31896586 DOI: 10.1073/pnas.1915202117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M-S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.
Collapse
|
28
|
Morrison CN, Prosser KE, Stokes RW, Cordes A, Metzler-Nolte N, Cohen SM. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem Sci 2019; 11:1216-1225. [PMID: 34123246 PMCID: PMC8148059 DOI: 10.1039/c9sc05586j] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity - particularly fragments with three-dimensional (3D) structures - has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called 'metallofragments' (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.
Collapse
Affiliation(s)
- Christine N Morrison
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anna Cordes
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
29
|
Recent progress in the development of organometallics for the treatment of cancer. Curr Opin Chem Biol 2019; 56:28-34. [PMID: 31812831 DOI: 10.1016/j.cbpa.2019.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
Abstract
From their early successes in medicine, organometallic compounds continue to attract interest as potential chemotherapeutics to treat a range of diseases. Here, we show from recent literature selected largely from the last two years that organometallics offer unique opportunities in medicine and, increasingly, a mechanistic-based approach is applied to their development, which has not always been the case.
Collapse
|
30
|
Biedulska M, Chylewska A, Nidzworski D. Comparative solution equilibria studies of complex formation between Ir(III) ion and antituberculosis drug analogues: Spectroscopic, potentiometric and conductometric approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Wei QM, Wang ZF, Qin QP, Wang SL, Tan MX, Zou BQ, Yao PF, Liang H. Inhibition of telomerase activity and SK-OV-3/DDP cell apoptosis by rhodium(III) and iron(III) complexes with 4′-(3-thiophenecarboxaldehyde)-2,2′:6′,2″-terpyridine. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Bouhdada M, Amane MEL, El Hamzaoui N. Synthesis, spectroscopic studies, X-ray powder diffraction data and antibacterial activity of mixed transition metal complexes with sulfonate azo dye, sulfamate and caffeine ligands. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Cuello-Garibo JA, James CC, Siegler MA, Hopkins SL, Bonnet S. Selective Preparation of a Heteroleptic Cyclometallated Ruthenium Complex Capable of Undergoing Photosubstitution of a Bidentate Ligand. Chemistry 2018; 25:1260-1268. [PMID: 30318782 PMCID: PMC6392132 DOI: 10.1002/chem.201803720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Cyclometallated ruthenium complexes typically exhibit red‐shifted absorption bands and lower photolability compared to their polypyridyl analogues. They also have lower symmetry, which sometimes makes their synthesis challenging. In this work, the coordination of four N,S bidentate ligands, 3‐(methylthio)propylamine (mtpa), 2‐(methylthio)ethylamine (mtea), 2‐(methylthio)ethyl‐2‐pyridine (mtep), and 2‐(methylthio)methylpyridine (mtmp), to the cyclometallated precursor [Ru(bpy)(phpy)(CH3CN)2]+ (bpy=2,2′‐bipyridine, Hphpy=2‐phenylpyridine) has been investigated, furnishing the corresponding heteroleptic complexes [Ru(bpy)(phpy)(N,S)]PF6 ([2]PF6–[5]PF6, respectively). The stereoselectivity of the synthesis strongly depended on the size of the ring formed by the Ru‐coordinated N,S ligand, with [2]PF6 and [4]PF6 being formed stereoselectively, but [3]PF6 and [5]PF6 being obtained as mixtures of inseparable isomers. The exact stereochemistry of the air‐stable complex [4]PF6 was established by a combination of DFT, 2D NMR, and single‐crystal X‐ray crystallographic studies. Finally, [4]PF6 was found to be photosubstitutionally active under irradiation with green light in acetonitrile, which makes it the first cyclometallated ruthenium complex capable of undergoing selective photosubstitution of a bidentate ligand.
Collapse
Affiliation(s)
- Jordi-Amat Cuello-Garibo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Catriona C James
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Maxime A Siegler
- Small Molecule X-ray Facility, Department of Chemistry, John Hopkins University, Baltimore, Maryland, 21218, USA
| | - Samantha L Hopkins
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
34
|
Nath M, Roy P, Mishra R, Thakur M. Structure‐cytotoxicity relationship for apoptotic inducers organotin(IV) derivatives of mandelic acid and L‐proline and their mixed ligand complexes having enhanced cytotoxicity. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mala Nath
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Partha Roy
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Rutusmita Mishra
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Mridula Thakur
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
35
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods. PLoS One 2018; 13:e0204624. [PMID: 30261022 PMCID: PMC6160121 DOI: 10.1371/journal.pone.0204624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Therapy with inhaled carbon monoxide (CO) is being tested in human clinical trials, yet the alternative use of prodrugs, CO-Releasing Molecules (CORMs), is conceptually advantageous. These molecules are designed to release carbon monoxide in specific tissues, in response to some locally expressed stimulus, where CO can trigger a cytoprotective response. The design of such prodrugs, mostly metal carbonyl complexes, must consider their ADMET profiles, including their interaction with transport plasma proteins. However, the molecular details of this interaction remain elusive. To shed light into this matter, we focused on the CORM prototype [Mo(η5-Cp)(CH2COOH)(CO)3] (ALF414) and performed a detailed molecular characterization of its interaction with bovine serum albumin (BSA), using spectroscopic and computational methods. The experimental results show that ALF414 partially quenches the intrinsic fluorescence of BSA without changing its secondary structure. The interaction between BSA and ALF414 follows a dynamic quenching mechanism, indicating that no stable complex is formed between the protein Trp residues and ALF414. The molecular dynamics simulations are in good agreement with the experimental results and confirm the dynamic and unspecific character of the interaction between ALF414 and BSA. The simulations also provide important insights into the nature of the interactions of this CORM prototype with BSA, which are dominated by hydrophobic contacts, with a contribution from hydrogen bonding. This kind of information is useful for future CORM design.
Collapse
|
37
|
|
38
|
Hebenbrock M, González-Abradelo D, Strassert CA, Müller J. DNA Groove-binding Ability of Luminescent Platinum(II) Complexes based on a Family of Tridentate N^N^C Ligands Bearing Differently Substituted Alkyl Tethers. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| | - Darío González-Abradelo
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| |
Collapse
|
39
|
Kong D, Tian M, Guo L, Liu X, Zhang S, Song Y, Meng X, Wu S, Zhang L, Liu Z. Novel iridium(III) iminopyridine complexes: synthetic, catalytic, and in vitro anticancer activity studies. J Biol Inorg Chem 2018; 23:819-832. [PMID: 29934699 DOI: 10.1007/s00775-018-1578-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Organometallic half-sandwich IrIII complexes of the type [(η5-Cpx)Ir(N^N)Cl]PF6 1-6, where Cpx = C5Me5 (Cp*), C5Me4C6H5 (Cpxph), C5Me4C6H4C6H5 (Cpxbiph), N^N is imionopyridine chelating ligand, were prepared and characterized. The X-ray crystal structure of complex 1 has been determined. Four compounds displayed higher anticancer potency than clinically used anticancer drug cisplatin against A549 cancer cells, especially complex 3 which is 8 times more active than cisplatin. No hydrolysis was observed by NMR and UV-Vis for complexes 3 and 6; however, these complexes show big differences in nucleobase binding, mainly decided by the imionopyridine chelating ligand. Complex 3 is stable in the presence of glutathione, but 6 reacted rapidly with glutathione. The octanol/water partition coefficients (log P) of 3 and 6 have been determined. In addition, these complexes display effective catalytic activity in converting coenzyme NADH to NAD+ by accepting hydride to form an Ir hydride adduct. The mechanism of actions of these complexes involves apoptosis induction, cell cycles arrest, and significant increase of reactive oxygen species levels in A549 cancer cells.
Collapse
Affiliation(s)
- Deliang Kong
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Meng Tian
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Xicheng Liu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Shumiao Zhang
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Yameng Song
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Xin Meng
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Shu Wu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Lingzi Zhang
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
40
|
Abbadi BL, Rodrigues-Junior VDS, Dadda ADS, Pissinate K, Villela AD, Campos MM, Lopes LGDF, Bizarro CV, Machado P, Sousa EHS, Basso LA. Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Front Microbiol 2018; 9:880. [PMID: 29765372 PMCID: PMC5938375 DOI: 10.3389/fmicb.2018.00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.
Collapse
Affiliation(s)
- Bruno L Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valnês da Silva Rodrigues-Junior
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adilio da Silva Dadda
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kenia Pissinate
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anne D Villela
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G de França Lopes
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo H S Sousa
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Elloumi-Mseddi J, Mnif S, Akacha N, Hakim B, Pigeon P, Jaouen G, Top S, Aifa S. Selective cytotoxicity of arene tricarbonylchromium towards tumour cell lines. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
|
43
|
Abstract
A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
44
|
Cross JM, Gallagher N, Gill JH, Jain M, McNeillis AW, Rockley KL, Tscherny FH, Wirszycz NJ, Yufit DS, Walton JW. Pyridylphosphinate metal complexes: synthesis, structural characterisation and biological activity. Dalton Trans 2018; 45:12807-13. [PMID: 27468432 DOI: 10.1039/c6dt01264g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a series of 25 pseudo-octahedral pyridylphosphinate metal complexes (Ru, Os, Rh, Ir) has been synthesised and assessed in biological systems. Each metal complex incorporates a pyridylphosphinate ligand, a monodentate halide and a capping η(6)-bound aromatic ligand. Solid- and solution-state analyses of two complexes reveal a structural preference for one of a possible two diastereomers. The metal chlorides hydrolyse rapidly in D2O to form a 1 : 1 equilibrium ratio between the aqua and chloride adducts. The pKa of the aqua adduct depends upon the pyridyl substituent and the metal but has little dependence upon the phosphinate R' group. Toxicity was measured in vitro against non-small cell lung carcinoma H460 cells, with the most potent complexes reporting IC50 values around 50 μM. Binding studies with selected amino acids and nucleobases provide a rationale for the variation in toxicity observed within the series. Finally, an investigation into the ability of the chelating amino acid l-His to displace the phosphinate O-metal bond shows the potential for phosphinate complexes to act as prodrugs that can be activated in the intracellular environment.
Collapse
Affiliation(s)
- Jasmine M Cross
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Natalie Gallagher
- School of Medicine, Pharmacy and Health, Durham University, Wolfson Research Institute, Queen's Campus, Stockton on Tees, TS17 6BH, UK
| | - Jason H Gill
- School of Medicine, Pharmacy and Health, Durham University, Wolfson Research Institute, Queen's Campus, Stockton on Tees, TS17 6BH, UK
| | - Mohit Jain
- School of Medicine, Pharmacy and Health, Durham University, Wolfson Research Institute, Queen's Campus, Stockton on Tees, TS17 6BH, UK
| | | | - Kimberly L Rockley
- School of Medicine, Pharmacy and Health, Durham University, Wolfson Research Institute, Queen's Campus, Stockton on Tees, TS17 6BH, UK
| | - Fiona H Tscherny
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Natasha J Wirszycz
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - James W Walton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
45
|
Shannan B, Watters A, Chen Q, Mollin S, Dörr M, Meggers E, Xu X, Gimotty PA, Perego M, Li L, Benci J, Krepler C, Brafford P, Zhang J, Wei Z, Zhang G, Liu Q, Yin X, Nathanson KL, Herlyn M, Vultur A. PIM kinases as therapeutic targets against advanced melanoma. Oncotarget 2018; 7:54897-54912. [PMID: 27448973 PMCID: PMC5342389 DOI: 10.18632/oncotarget.10703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients.
Collapse
Affiliation(s)
- Batool Shannan
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Andrea Watters
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Quan Chen
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Stefan Mollin
- Department of Chemistry, University of Marburg, Marburg, Germany
| | - Markus Dörr
- Department of Chemistry, University of Marburg, Marburg, Germany
| | - Eric Meggers
- Department of Chemistry, University of Marburg, Marburg, Germany
| | - Xiaowei Xu
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michela Perego
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ling Li
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Joseph Benci
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Patricia Brafford
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Gao Zhang
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Xiangfan Yin
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
46
|
Wang Y, Dansette PM, Pigeon P, Top S, McGlinchey MJ, Mansuy D, Jaouen G. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties. Chem Sci 2018; 9:70-78. [PMID: 29629075 PMCID: PMC5870192 DOI: 10.1039/c7sc04213b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
Abstract
Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers.
Collapse
Affiliation(s)
- Yong Wang
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , UMR 8601 CNRS , Université Paris Descartes , PRES Paris Cité Sorbonne , 45 rue des Saints Pères , 75270 Paris Cedex 06 , France .
| | - Pascal Pigeon
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Siden Top
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Michael J McGlinchey
- UCD School of Chemistry and Chemical Biology , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , UMR 8601 CNRS , Université Paris Descartes , PRES Paris Cité Sorbonne , 45 rue des Saints Pères , 75270 Paris Cedex 06 , France .
| | - Gérard Jaouen
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| |
Collapse
|
47
|
Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThis review summarizes the history and recent developments of the field of organometallic chemical biology with a particular emphasis on the development of novel bioconjugation approaches. Over the years, numerous transformations have emerged for biomolecule modification with the use of organometallic reagents; these include [3+2] cycloadditions, C–C, C–S, C–N, and C–O bond forming processes, as well as metal-mediated deprotection (“decaging”) reactions. These conceptually new additions to the chemical biology toolkit highlight the potential of organometallic chemistry to make a significant impact in the field of chemical biology by providing further opportunities for the development of chemoselective, site-specific and spatially resolved methods for biomolecule structure and function manipulation. Examples of these transformations, as well as existing challenges and future prospects of this rapidly developing field are highlighted in this review.
Collapse
|
48
|
Sudhi G, Rajina SR, Praveen SG, Xavier TS, Kenny PTM, Jaiswal-Nagar D, Binoy J. Investigations of vibrational spectra and bioactivity of novel anticancer drug N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid ethyl ester. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:234-244. [PMID: 28582725 DOI: 10.1016/j.saa.2017.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The bioactivity of compounds is mainly dependent on molecular structure and the present work aims to explore the bonding features responsible for biological activity of novel anticancer drug N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid ethyl ester (FNGABEE). In the present study, we investigate the molecular structural properties of newly synthesized title compound through experimental and quantum chemical studies. The detailed vibrational analysis has been performed using FT IR and FT Raman spectrum, aided by DFT computed geometry, vibrational spectrum, Eigen vector distribution and PED, at B3LYP/6-311++G(d,p) level. The resonance structure of naphthalene, different from that of benzene, revealed by molecular structure has been investigated using CC and CC stretching modes. The proton transfer in amide has been analyzed to obtain spectral distinction between different carbonyl and CN groups which point to the reactive sites responsible for binding with DNA and bovine serum albumin (BSA). The spectral distinction between eclipsed and staggered form of ferrocene has been analyzed. The molecular docking of FNGABEE with BSA and DNA has been performed to find the strength of binding and the moieties responsible for the interactions. The experimental binding studies of FNGABEE with BSA and DNA has been performed using UV absorption spectroscopy and fluorometric assay, to find the nature and strength of binding.
Collapse
Affiliation(s)
- Geethu Sudhi
- Department of Physics, University of Kerala, Govt. College for Women, Thiruvananthapuram 695014, Kerala, India
| | - S R Rajina
- Department of Physics, University of Kerala, Govt. College for Women, Thiruvananthapuram 695014, Kerala, India
| | - S G Praveen
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - T S Xavier
- Department of Physics, University of Kerala, Govt. College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Peter T M Kenny
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - D Jaiswal-Nagar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - J Binoy
- Department of Physics, Govt. College for Women, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
49
|
Saad EA, Hassanien MM, El-Mezayen HA, ELmenawy NM. Regression of murine Ehrlich ascites carcinoma using synthesized cobalt complex. MEDCHEMCOMM 2017; 8:1103-1111. [PMID: 30108821 PMCID: PMC6072360 DOI: 10.1039/c6md00618c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/15/2017] [Indexed: 01/13/2023]
Abstract
Cisplatin as a chief chemotherapy has nephro-toxicity and so we have tried to develop a novel antitumor drug based on a combination of cobalt metal ion with an organic moiety. The antitumor activity of the complex was tested in vitro and in vivo against murine Ehrlich ascites carcinoma (EAC). Antioxidant capacity and nucleic acids content were determined. Cobalt(ii) diacetyl monoxime-2-hydrazinopyridine complex significantly diminished tumor load. It decreased the tumor proliferation rate and obviously increased the life span of EAC-bearing mice. It reversed the haematological parameters back towards normal, reduced liver enzymes and urea, and increased albumin and total protein. Antioxidant parameters levels were reversed towards normal. An assessment was conducted by comparing these results with those obtained using the standard drug, cisplatin. The results suggest that the cobalt complex can be considered as a potent anticancer agent as it showed appreciable antitumor activity in EAC-bearing mice that was almost analogous to that of the reference standard, cisplatin.
Collapse
Affiliation(s)
- Entsar A Saad
- Chemistry Department , Faculty of Science , Damietta University , Damietta , Egypt .
| | - Mohamed M Hassanien
- Chemistry Department , Industrial Education College , Beni-Suef University , Beni-Suef , Egypt
| | - Hatem A El-Mezayen
- Chemistry Department , Faculty of Science , Helwan University , Cairo , Egypt
| | - Nada M ELmenawy
- Chemistry Department , Faculty of Science , Damietta University , Damietta , Egypt .
| |
Collapse
|
50
|
Basu Baul TS, Dutta D, Duthie A, Prasad R, Rana NK, Koch B, Tiekink ERT. Triphenyltin(IV) benzoates with diazenyl/imino scaffold exhibiting remarkable apoptosis mediated by reactive oxygen species. J Inorg Biochem 2017; 173:79-92. [PMID: 28505480 DOI: 10.1016/j.jinorgbio.2017.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/25/2017] [Accepted: 04/23/2017] [Indexed: 01/13/2023]
Abstract
The cytotoxic potency of a series of triphenyltin(IV) compounds of general composition [Ph3Sn(Ln)] (1-6) has been probed in vitro employing MDA-MB-231 (human breast cancer) and HeLa (human cervical cancer) cell lines, where Ln=L1-3; isomeric 2/3/4-{(E)-2-[4-(dimethylamino)phenyl]diazenyl}benzoates and L4-6 are their corresponding isoelectronic imino analogues 2/3/4-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoates. Compounds 1-6 have been characterized by elemental analysis and their spectroscopic properties were studied using IR and NMR (1H, 13C, 119Sn) techniques. The molecular structures of a pro-ligand 2-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoic acid (HL4) and two representative molecules, Ph3Sn(L2) 2 and Ph3Sn(L5) 5, have been determined by X-ray crystallography. Structural analyses of 2 and 5 revealed distorted tetrahedral geometries within C3O donor sets owing to monodentate modes of coordination of the respective carboxylate ligands, close intramolecular Sn…O(carbonyl) interactions notwithstanding. Cytotoxic studies in vitro in MDA-MB-231 and HeLa cell lines revealed high activity, in sub-micromolar range, for all investigated compounds. Among these, 1 and 3 exhibited potent cytotoxicity most effectively towards MDA-MB-231 cells with a IC50 value of 1.19 and 1.44μM, respectively, whereas 5 showed remarkable activity towards HeLa cells with a IC50 value of 0.88μM, yet the series of compounds had minimal cytotoxic effect on normal HEK 293 (human embryonic kidney) cell line. The underlying investigation suggested that the compounds exert potent antitumor effect by elevating intracellular reactive oxygen species generation and cause delay in cell cycle by inhibiting cells at G2/M phase. The results presented herein suggest further development of this class of triphenyltin(IV) compounds-based drugs as potential anti-cancer therapies should be pursued.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Dhrubajyoti Dutta
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Andrew Duthie
- School of Life & Environmental Science, Deakin University, Geelong, Victoria 3217, Australia
| | - Ritika Prasad
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Nishant Kumar Rana
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|