1
|
Diemer V, Roy E, Agouridas V, Melnyk O. Protein desulfurization and deselenization. Chem Soc Rev 2024; 53:8521-8545. [PMID: 39010733 DOI: 10.1039/d4cs00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Methods enabling the dechalcogenation of thiols or selenols have been investigated and developed for a long time in fields of research as diverse as the study of prebiotic chemistry, the engineering of fuel processing techniques, the study of biomolecule structures and function or the chemical synthesis of biomolecules. The dechalcogenation of thiol or selenol amino acids is nowadays a particularly flourishing area of research for being a pillar of modern chemical protein synthesis, when used in combination with thiol or selenol-based chemoselective peptide ligation chemistries. This review offers a comprehensive and scholarly overview of the field, emphasizing emerging trends and providing a detailed and critical mechanistic discussion of the dechalcogenation methods developed so far. Taking advantage of recently published reports, it also clarifies some unexpected desulfurization reactions that were observed in the past and for which no explanation was provided at the time. Additionally, the review includes a discussion on principal desulfurization methods within the framework of newly introduced green chemistry metrics and toolkits, providing a well-rounded exploration of the subject.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Eliott Roy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
2
|
Singh A, Avinash K, Malaspina LA, Banoo M, Alhameedi K, Jayatilaka D, Grabowsky S, Thomas SP. Dynamic Covalent Bonds in the Ebselen Class of Antioxidants Probed by X-ray Quantum Crystallography. Chemistry 2024; 30:e202303384. [PMID: 38126954 DOI: 10.1002/chem.202303384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Dynamic bonds are essential structural ingredients of dynamic covalent chemistry that involve reversible cleavage and formation of bonds. Herein, we explore the electronic characteristics of Se-N bonds in the organo-selenium antioxidant ebselen and its derivatives for their propensity to function as dynamic covalent bonds by employing high-resolution X-ray quantum crystallography and complementary computational studies. An analysis of the experimentally reconstructed X-ray wavefunctions reveals the salient electronic features of the Se-N bonds with very low electron density localized at the bonding region and a positive Laplacian value at the bond critical point. Bond orders and percentage covalency and ionicity estimated from the X-ray wavefunctions, along with localized orbital locator (LOL) and electron localization function (ELF) analyses show that the Se-N bond is unique in its closed shell-like features, despite being a covalent bond. Time-dependent DFT calculations simulate the cleavage of Se-N bonds in ebselen in the excited state, further substantiating their nature as dynamic bonds.
Collapse
Affiliation(s)
- Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Kiran Avinash
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Lorraine A Malaspina
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, Switzerland
| | - Masoumeh Banoo
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Khidhir Alhameedi
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Faculty of Education for Pure Sciences -, University of Kerbala, Karbala, Iraq
| | - Dylan Jayatilaka
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Simon Grabowsky
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, Switzerland
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
3
|
Agouridas V, Ollivier N, Vicogne J, Diemer V, Melnyk O. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency. Acc Chem Res 2022; 55:2685-2697. [PMID: 36083810 PMCID: PMC9494750 DOI: 10.1021/acs.accounts.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The last two decades have witnessed the rise in power of chemical protein synthesis to the point where it now constitutes an established corpus of synthetic methods efficiently complementing biological approaches. One factor explaining this spectacular evolution is the emergence of a new class of chemoselective reactions enabling the formation of native peptide bonds between two unprotected peptidic segments, also known as native ligation reactions. In recent years, their application has fueled the production of homogeneous batches of large and highly decorated protein targets with a control of their composition at the atomic level. In doing so, native ligation reactions have provided the means for successful applications in chemical biology, medicinal chemistry, materials science, and nanotechnology research.The native chemical ligation (NCL) reaction has had a major impact on the field by enabling the chemoselective formation of a native peptide bond between a C-terminal peptidyl thioester and an N-terminal cysteinyl peptide. Since its introduction in 1994, the NCL reaction has been made the object of significant improvements and its scope and limitations have been thoroughly investigated. Furthermore, the diversification of peptide segment assembly strategies has been essential to access proteins of increasing complexity and has had to overcome the challenge of controlling the reactivity of ligation partners.One hallmark of NCL is its dependency on thiol reactivity, including for its catalysis. While Nature constantly plays with the redox properties of biological thiols for the regulation of numerous biochemical pathways, such a control of reactivity is challenging to achieve in synthetic organic chemistry and, in particular, for those methods used for assembling peptide segments by chemical ligation. This Account covers the studies conducted by our group in this area. A leading theme of our research has been the conception of controllable acyl donors and cysteine surrogates that place the chemoselective formation of amide bonds by NCL-like reactions under the control of dichalcogenide-based redox systems. The dependency of the redox potential of dichalcogenide bonds on the nature of the chalcogenides involved (S, Se) has appeared as a powerful means for diversifying the systems, while allowing their sequential activation for protein synthesis. Such a control of reactivity mediated by the addition of harmless redox additives has greatly facilitated the modular and efficient preparation of multiple targets of biological relevance. Taken together, these endeavors provide a practical and robust set of methods to address synthetic challenges in chemical protein synthesis.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France,Centrale
Lille, F-59000 Lille, France
| | - Nathalie Ollivier
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Jérôme Vicogne
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Vincent Diemer
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France,
| |
Collapse
|
4
|
Diemer V, Firstova O, Agouridas V, Melnyk O. Pedal to the Metal: The Homogeneous Catalysis of the Native Chemical Ligation Reaction. Chemistry 2022; 28:e202104229. [PMID: 35048443 DOI: 10.1002/chem.202104229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/08/2022]
Abstract
The native chemical ligation reaction of peptide thioesters with cysteinyl peptides is a pivotal chemical process in the production of native or modified peptides and proteins, and well beyond in the preparation of various biomolecule analogs and materials. To benefit from this reaction at its fullest and to access all the possible applications, the experimentalist needs to know the factors affecting its rate and how to control it. This concept article presents the fundamental principles underlying the rate of the native chemical ligation and its homogeneous catalysis by nucleophiles. It has been prepared to serve as a quick guide in the search for an appropriate catalyst.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Olga Firstova
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France.,Centrale Lille, 59000, Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| |
Collapse
|
5
|
Wierzbicka M, Waliczek M, Dziadecka A, Stefanowicz P. One-Pot Cyclization and Cleavage of Peptides with N-Terminal Cysteine via the N,S-Acyl Shift of the N-2-[Thioethyl]glycine Residue. J Org Chem 2021; 86:12292-12299. [PMID: 34355572 PMCID: PMC8419835 DOI: 10.1021/acs.joc.1c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
We developed
a one-pot method for peptide cleavage from
a solid support via the N,S-acyl
shift of N-2-[thioethyl]glycine and transthioesterification
using external thiols to produce cyclic peptides through native chemical
self-ligation with the N-terminal cysteine. The feasibility
of this methodology is validated by the syntheses of model short peptides,
including a tetrapeptide, the bicyclic sunflower trypsin inhibitor
SFTI-1, and rhesus Θ-defensin RTD-1. Synthesis of the whole
peptide precursor can be fully automated and proceeds without epimerization
or dimerization.
Collapse
Affiliation(s)
- Magdalena Wierzbicka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Anna Dziadecka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Panja S, Hanson S, Wang C. EDTA-Inspired Polydentate Hydrogels with Exceptionally High Heavy Metal Adsorption Capacity as Reusable Adsorbents for Wastewater Purification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25276-25285. [PMID: 32383581 DOI: 10.1021/acsami.0c03689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water pollution by heavy metal ions is a critical threat to public health. To remove the heavy metal pollutants from large waterbodies, we have synthesized a biocompatible, cost-effective, metal ion non-specific, and ethylenediaminetetraacetic acid (EDTA)-inspired polydentate hydrogel with exceptionally high adsorption capacity and reusability. The hydrogel was synthesized by the transamidation reaction between hydrolyzed polyacrylamide and branched polyethylenimine (BPEI). The mechanical strength of the synthesized hydrogel displayed an increasing trend with the wt % of the cross-linker (BPEI) and achieved a maximum storage modulus (Gmax') of 1093 Pa. Scanning electron microscopy revealed a porous network structure of the hydrogel (pore size: 30-70 μm), resulting in a very high swelling ratio of 5800%. The porous hydrogel manifested the maximum adsorption capacity of 482.2 mg/g when adsorbing from a mixture of metal ions (Cr3+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+), higher than any EDTA-grafted material known to date. The high adsorption capacity of the hydrogel was attributed to the existence of numerous EDTA-mimicking coordinating functional groups, as confirmed by X-ray photoelectron spectroscopy. In addition, the hydrogel showed the self-healing property and preserved more than 85% adsorption efficiency even after five cycles of reuse. Furthermore, the hydrogels showed no or moderate toxicity toward mammalian cells.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Diemer V, Ollivier N, Leclercq B, Drobecq H, Vicogne J, Agouridas V, Melnyk O. A cysteine selenosulfide redox switch for protein chemical synthesis. Nat Commun 2020; 11:2558. [PMID: 32444769 PMCID: PMC7244499 DOI: 10.1038/s41467-020-16359-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
The control of cysteine reactivity is of paramount importance for the synthesis of proteins using the native chemical ligation (NCL) reaction. We report that this goal can be achieved in a traceless manner during ligation by appending a simple N-selenoethyl group to cysteine. While in synthetic organic chemistry the cleavage of carbon-nitrogen bonds is notoriously difficult, we describe that N-selenoethyl cysteine (SetCys) loses its selenoethyl arm in water under mild conditions upon reduction of its selenosulfide bond. Detailed mechanistic investigations show that the cleavage of the selenoethyl arm proceeds through an anionic mechanism with assistance of the cysteine thiol group. The implementation of the SetCys unit in a process enabling the modular and straightforward assembly of linear or backbone cyclized polypeptides is illustrated by the synthesis of biologically active cyclic hepatocyte growth factor variants.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nathalie Ollivier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Bérénice Leclercq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
8
|
Yanase M, Nakatsu K, Cardos CJ, Konda Y, Hayashi G, Okamoto A. Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem Sci 2019; 10:5967-5975. [PMID: 31360403 PMCID: PMC6566460 DOI: 10.1039/c9sc00646j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
A new crypto-thioester, cysteinylprolyl imide (CPI) peptide, offers a practical synthetic pathway and reliable reaction rate to be successfully applied to chemical protein synthesis.
Native chemical ligation (NCL) between the C-terminal peptide thioester and the N-terminal cysteinyl-peptide revolutionized the field of chemical protein synthesis. The difficulty of direct synthesis of the peptide thioester in the Fmoc method has prompted the development of crypto-thioesters that can be efficiently converted into thioesters. Cysteinylprolyl ester (CPE), which is an N–S acyl shift-driven crypto-thioester that relies on an intramolecular O–N acyl shift to displace the amide-thioester equilibrium, enabled trans-thioesterification and subsequent NCL in one pot. However, the utility of CPE is limited because of the moderate thioesterification rates and the synthetic complexity introduced by the ester group. Herein, we develop a new crypto-thioester, cysteinylprolyl imide (CPI), which replaces the alcohol leaving group of CPE with other leaving groups such as benzimidazolidinone, oxazolidinone, and pyrrolidinone. CPI peptides were efficiently synthesized by using standard Fmoc solid-phase peptide synthesis (SPPS) and subsequent on-resin imide formation. Screening of the several imide structures indicated that methyloxazolidinone-t-leucine (MeOxd-Tle) showed faster conversion into thioester and higher stability against hydrolysis under NCL conditions. Finally, by using CPMeOxd-Tle peptides, we demonstrated the chemical synthesis of affibody via N-to-C sequential, three-segment ligation and histone H2A.Z via convergent four-segment ligation. This facile and straightforward method is expected to be broadly applicable to chemical protein synthesis.
Collapse
Affiliation(s)
- Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Koki Nakatsu
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Charlane Joy Cardos
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yoshiki Konda
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Department of Biomolecular Engineering , Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
9
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
10
|
Zuo C, Zhang B, Yan B, Zheng JS. One-pot multi-segment condensation strategies for chemical protein synthesis. Org Biomol Chem 2019; 17:727-744. [DOI: 10.1039/c8ob02610f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper describes recent advances of one-pot multi-segment condensation strategies based on kinetically controlled strategies and/or protecting group-removal strategies in chemical protein synthesis.
Collapse
Affiliation(s)
- Chong Zuo
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
- Department of Chemistry
| | - Baochang Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Bingjia Yan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ji-Shen Zheng
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230027
- China
| |
Collapse
|
11
|
Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD. A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Chem Sci 2018; 10:239-251. [PMID: 30713635 PMCID: PMC6333167 DOI: 10.1039/c8sc01074a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Steric bulk can compensate for a catalytically critical histidine in an intein's active site and promote the N–S acyl shift.
Inteins remove themselves from a precursor protein by protein splicing. Due to the concomitant structural changes of the host protein, this self-processing reaction has enabled many applications in protein biotechnology and chemical biology. We show that the evolved M86 mutant of the Ssp DnaB intein displays a significantly improved tolerance towards non-native amino acids at the N-terminally flanking (–1) extein position compared to the parent intein, in the form of both an artificially trans-splicing split intein and the cis-splicing mini-intein. Surprisingly, side chains with increased steric bulk compared to the native Gly(–1) residue, including d-amino acids, were found to compensate for the essential block B histidine in His73Ala mutants in the initial N–S acyl shift of the protein splicing pathway. In the case of the M86 intein, large (–1) side chains can even rescue protein splicing activity as a whole. With the comparison of three crystal structures, namely of the M86 intein as well as of its Gly(–1)Phe and Gly(–1)Phe/His73Ala mutants, our data supports a model in which the intein's active site can exert a strain by varying mechanisms on the different angles of the scissile bond at the extein–intein junction to effect a ground-state destabilization. The compensatory mechanism of the block B histidine is the first example for the direct functional role of an extein residue in protein splicing. It sheds new light on the extein–intein interplay and on possible consequences of their co-evolution as well as on the laboratory engineering of improved inteins.
Collapse
Affiliation(s)
- Kristina Friedel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Monika A Popp
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Julian C J Matern
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Emerich M Gazdag
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Ilka V Thiel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Gerrit Volkmann
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Wulf Blankenfeldt
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics , Technische Universität Braunschweig , Spielmannstraße 7 , 38106 Braunschweig , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|
12
|
Cargoët M, Diemer V, Snella B, Desmet R, Blanpain A, Drobecq H, Agouridas V, Melnyk O. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J Org Chem 2018; 83:12584-12594. [PMID: 30230829 DOI: 10.1021/acs.joc.8b01903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Alkyl bis(2-selanylethyl)amines catalyze the synthesis of peptide thioesters or peptide ligation from bis(2-sulfanylethyl)amido (SEA) peptides. These catalysts are generated in situ by reduction of the corresponding cyclic diselenides by tris(2-carboxyethyl)phosphine. They are particularly efficient at pH 4.0 by accelerating the thiol-thioester exchange processes, which are otherwise rate-limiting at this pH. By promoting SEA-mediated reactions at mildly acidic pH, they facilitate the synthesis of complex peptides such as cyclic O-acyl isopeptides that are otherwise hardly accessible.
Collapse
Affiliation(s)
- Marine Cargoët
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vincent Diemer
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Benoît Snella
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Rémi Desmet
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Annick Blanpain
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Hervé Drobecq
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vangelis Agouridas
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Oleg Melnyk
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| |
Collapse
|
13
|
Pira SL, El Mahdi O, Raibaut L, Drobecq H, Dheur J, Boll E, Melnyk O. Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH. Org Biomol Chem 2018; 14:7211-6. [PMID: 27282651 DOI: 10.1039/c6ob01079b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.
Collapse
Affiliation(s)
- S L Pira
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - O El Mahdi
- Université Sidi Mohamed Ben Abdellah, Morocco
| | - L Raibaut
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - H Drobecq
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - J Dheur
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - E Boll
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | - O Melnyk
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| |
Collapse
|
14
|
Sharma N, Kumar S, Kumar S, Mehta SK, Bhasin KK. Synthesis and characterization of fused imidazole heterocyclic selenoesters and their application for chemical detoxification of HgCl2. NEW J CHEM 2018. [DOI: 10.1039/c7nj03908e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoester derivatives of imidazo[1,2-a]pyridine/imidazo[1,2-a]pyrimidine has been synthesized by the reaction of sodium selenocarboxylates with 2-(chloromethyl)imidazo[1,2-a]pyridine/pyrimidine.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
15
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|
16
|
Agouridas V, El Mahdi O, Cargoët M, Melnyk O. A statistical view of protein chemical synthesis using NCL and extended methodologies. Bioorg Med Chem 2017; 25:4938-4945. [PMID: 28578993 DOI: 10.1016/j.bmc.2017.05.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022]
Abstract
Native chemical ligation and extended methodologies are the most popular chemoselective reactions for protein chemical synthesis. Their combination with desulfurization techniques can give access to small or challenging proteins that are exploited in a large variety of research areas. In this report, we have conducted a statistical review of their use for protein chemical synthesis in order to provide a flavor of the recent trends and identify the most popular chemical tools used by protein chemists. To this end, a protein chemical synthesis (PCS) database (http://pcs-db.fr) was created by collecting a set of relevant data from more than 450 publications covering the period 1994-2017. A preliminary account of what this database tells us is presented in this report.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| | | | - Marine Cargoët
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France.
| |
Collapse
|
17
|
Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0381-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
|
19
|
Boll E, Drobecq H, Lissy E, Cantrelle FX, Melnyk O. Kinetically Controlled Chemoselective Cyclization Simplifies the Access to Cyclic and Branched Peptides. Org Lett 2016; 18:3842-5. [DOI: 10.1021/acs.orglett.6b01847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Emmanuelle Boll
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| | - Hervé Drobecq
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| | - Elizabeth Lissy
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| | - François-Xavier Cantrelle
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Oleg Melnyk
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161, F-59000 Lille, France
| |
Collapse
|
20
|
Raibaut L, Cargoët M, Ollivier N, Chang YM, Drobecq H, Boll E, Desmet R, Monbaliu JCM, Melnyk O. Accelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates. Chem Sci 2016; 7:2657-2665. [PMID: 28660038 PMCID: PMC5477010 DOI: 10.1039/c5sc03459k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
Given the potential of peptide selenoesters for protein total synthesis and the paucity of methods for the synthesis of these sensitive peptide derivatives, we sought to explore the usefulness of the bis(2-selenylethyl)amido (SeEA) group, i.e. the selenium analog of the bis(2-sulfanylethyl)amido (SEA) group, for accelerating peptide bond formation. A chemoselective exchange process operating in water was devised for converting SEA peptides into the SeEA ones. Kinetic studies show that SeEA ligation, which relies on an initial N,Se-acyl shift process, proceeds significantly faster than SEA ligation. This property enabled the design of a kinetically controlled three peptide segment assembly process based on the sequential use of SeEA and SEA ligation reactions. The method was validated by the total synthesis of hepatocyte growth factor K1 (85 AA) and biotinylated NK1 (180 AA) domains.
Collapse
Affiliation(s)
- Laurent Raibaut
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Marine Cargoët
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Nathalie Ollivier
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Yun Min Chang
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Hervé Drobecq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Emmanuelle Boll
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Rémi Desmet
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis , Department of Chemistry , University of Liège , Building B6a, Room 3/16a, Sart-Tilman , B-4000 Liège , Belgium
| | - Oleg Melnyk
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| |
Collapse
|
21
|
Cowper B, Shariff L, Chen W, Gibson SM, Di WL, Macmillan D. Expanding the scope of N → S acyl transfer in native peptide sequences. Org Biomol Chem 2016; 13:7469-76. [PMID: 26066020 DOI: 10.1039/c5ob01029b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the factors that influence N → S acyl transfer in native peptide sequences, and discovery of new reagents that facilitate it, will be key to expanding its scope and applicability. Here, through a study of short model peptides in thioester formation and cyclisation reactions, we demonstrate that a wider variety of Xaa-Cys motifs than originally envisaged are capable of undergoing efficient N → S acyl transfer. We present data for the relative rates of thioester formation and cyclisation for a representative set of amino acids, and show how this expanded scope can be applied to the production of the natural protease inhibitor Sunflower Trypsin Inhibitor-1 (SFTI-1).
Collapse
Affiliation(s)
- Ben Cowper
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Raibaut L, Drobecq H, Melnyk O. Selectively Activatable Latent Thiol and Selenolesters Simplify the Access to Cyclic or Branched Peptide Scaffolds. Org Lett 2015; 17:3636-9. [DOI: 10.1021/acs.orglett.5b01817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Laurent Raibaut
- UMR CNRS
8161 Pasteur Institute of Lille, Univ Lille, 1 rue du Pr Calmette, 59021 Lille, France
| | - Hervé Drobecq
- UMR CNRS
8161 Pasteur Institute of Lille, Univ Lille, 1 rue du Pr Calmette, 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS
8161 Pasteur Institute of Lille, Univ Lille, 1 rue du Pr Calmette, 59021 Lille, France
| |
Collapse
|
23
|
Chen M, Heimer P, Imhof D. Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 2015; 47:1283-99. [DOI: 10.1007/s00726-015-1982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
|
24
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|