1
|
Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volarić J, Soudy C, Storck EM, Houghton JW, Palma-Duran SA, MacRae JI, Tomić G, Carr L, Downward J, Eggert US, Tate EW. A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation. Nat Biotechnol 2024; 42:1548-1558. [PMID: 38191663 PMCID: PMC11471619 DOI: 10.1038/s41587-023-02030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2023] [Indexed: 01/10/2024]
Abstract
The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.
Collapse
Affiliation(s)
| | - Marc P Baggelaar
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
- Utrecht University, Biomolecular Mass Spectrometry & Proteomics Group, Utrecht, The Netherlands
| | - James Sipthorp
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Ana Losada de la Lastra
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Manuel Tavares
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Jana Volarić
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | | | - Elisabeth M Storck
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | | | - Susana A Palma-Duran
- The Francis Crick Institute, London, UK
- Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | | | | | | | | | - Ulrike S Eggert
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | - Edward W Tate
- The Francis Crick Institute, London, UK.
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
2
|
Zou M, Zhou H, Gu L, Zhang J, Fang L. Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics. BIOLOGY 2024; 13:555. [PMID: 39194493 DOI: 10.3390/biology13080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Collapse
Affiliation(s)
- Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Letian Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Zhang N, Wu J, Zheng Q. Chemical proteomics approaches for protein post-translational modification studies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141017. [PMID: 38641087 DOI: 10.1016/j.bbapap.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The diversity and dynamics of proteins play essential roles in maintaining the basic constructions and functions of cells. The abundance of functional proteins is regulated by the transcription and translation processes, while the alternative splicing enables the same gene to generate distinct protein isoforms of different lengths. Beyond the transcriptional and translational regulations, post-translational modifications (PTMs) are able to further expand the diversity and functional scope of proteins. PTMs have been shown to make significant changes in the surface charges, structures, activation states, and interactome of proteins. Due to the functional complexity, highly dynamic nature, and low presence percentage, the study of protein PTMs remains challenging. Here we summarize and discuss the major chemical biology tools and chemical proteomics approaches to enrich and investigate the protein PTM of interest.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [PMID: 38532349 DOI: 10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Wenwei Yu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Lili Zhou
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Danhua Ling
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
- Department of General Dentistry, the Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, Hangzhou, Zhejiang, 310052, China
| | - Yangbo Xu
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Fuming He
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
5
|
Xu Y, Ding K, Peng T. Chemical Proteomics Reveals N ε-Fatty-Acylation of Septins by Rho Inactivation Domain (RID) of the Vibrio MARTX Toxin to Alter Septin Localization and Organization. Mol Cell Proteomics 2024; 23:100730. [PMID: 38311109 PMCID: PMC10924143 DOI: 10.1016/j.mcpro.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Vibrio species, the Gram-negative bacterial pathogens causing cholera and sepsis, produce multiple secreted virulence factors for infection and pathogenesis. Among these is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin that releases several critical effector domains with distinct functions inside eukaryotic host cells. One such effector domain, the Rho inactivation domain (RID), has been discovered to catalyze long-chain Nε-fatty-acylation on lysine residues of Rho GTPases, causing inactivation of Rho GTPases and disruption of the host actin cytoskeleton. However, whether RID modifies other host proteins to exert additional functions remains to be determined. Herein, we describe the integration of bioorthogonal chemical labeling and quantitative proteomics to globally profile the target proteins modified by RID in living cells. More than 246 proteins are identified as new RID substrates, including many involved in GTPase regulation, cytoskeletal organization, and cell division. We demonstrate that RID extensively Nε-fatty-acylates septin proteins, the fourth cytoskeletal component of mammalian cells with important roles in diverse cellular processes. While affinity purification and mass spectrometry analysis show that RID-mediated Nε-fatty-acylation does not affect septin-septin interactions, this modification increases the membrane association of septins and confers localization to detergent-resistant membrane rafts. As a result, the filamentous assembly and organization of septins are disrupted by RID-mediated Nε-fatty-acylation, further contributing to cytoskeletal and mitotic defects that phenocopy the effects of septin depletion. Overall, our work greatly expands the substrate scope and function of RID and demonstrates the role of RID-mediated Nε-fatty-acylation in manipulating septin localization and organization.
Collapse
Affiliation(s)
- Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China.
| |
Collapse
|
6
|
Zhang B, Yu Y, Fox BW, Liu Y, Thirumalaikumar VP, Skirycz A, Lin H, Schroeder FC. Amino acid and protein specificity of protein fatty acylation in C. elegans. Proc Natl Acad Sci U S A 2024; 121:e2307515121. [PMID: 38252833 PMCID: PMC10835129 DOI: 10.1073/pnas.2307515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Bennett W. Fox
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yinong Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | | | | | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- HHMI, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
7
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
8
|
ZDHHC16 restrains osteogenic differentiation of bone marrow mesenchymal stem cells by inhibiting phosphorylation of CREB. Heliyon 2023; 9:e12788. [PMID: 36685387 PMCID: PMC9852670 DOI: 10.1016/j.heliyon.2022.e12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Aims The osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) plays a critical role in fracture healing. Osteogenic differentiation is regulated by a variety of post-translational modifications, but the function of protein palmitoylation in osteogenesis remains largely unknown. Methods Osteogenic differentiation induction of hBMSCs was used in this study. RT‒qPCR and immunoblotting assays (WB) were used to test marker genes of osteogenic induction. Alkaline phosphatase (ALP) activity, ALP staining and Alizarin red staining were performed to evaluate osteogenesis of hBMSCs. Signal finder pathway reporter array, co-immunoprecipitation and WB were applied to elucidate the molecular mechanism. A mouse fracture model was used to verify the in vivo function of the ZDHHC inhibitor. Key findings We revealed that palmitic acid inhibited Runx2 mRNA expression in hBMSCs and identified ZDHHC16 as a potential target palmitoyl acyltransferase. In addition, ZDHHC16 decreased during osteogenic induction. Next, we confirmed the inhibitory function of ZDHHC16 by its knockdown or overexpression during osteogenesis of hBMSCs. Moreover, we illustrated that ZDHHC16 inhibited the phosphorylation of CREB, thus inhibiting osteogenesis of hBMSCs by enhancing the palmitoylation of CREB. With a mouse femur fracture model, we found that 2-BP, a general inhibitor of ZDHHCs, promoted fracture healing in vivo. Thus, we clarified the inhibitory function of ZDHHC16 during osteogenic differentiation. Significance Collectively, these findings highlight the inhibitory function of ZDHHC16 in osteogenesis as a potential therapy method for fracture healing.
Collapse
|
9
|
Zhao L, Zhong B, An Y, Zhang W, Gao H, Zhang X, Liang Z, Zhang Y, Zhao Q, Zhang L. Enhanced protein-protein interaction network construction promoted by in vivo cross-linking with acid-cleavable click-chemistry enrichment. Front Chem 2022; 10:994572. [PMID: 36479438 PMCID: PMC9720147 DOI: 10.3389/fchem.2022.994572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 03/22/2024] Open
Abstract
Chemical cross-linking coupled with mass spectrometry has emerged as a powerful strategy which enables global profiling of protein interactome with direct interaction interfaces in complex biological systems. The alkyne-tagged enrichable cross-linkers are preferred to improve the coverage of low-abundance cross-linked peptides, combined with click chemistry for biotin conjugation to allow the cross-linked peptide enrichment. However, a systematic evaluation on the efficiency of click approaches (protein-based or peptide-based) and diverse cleavable click-chemistry ligands (acid, reduction, and photo) for cross-linked peptide enrichment and release is lacking. Herein, together with in vivo chemical cross-linking by alkyne-tagged cross-linkers, we explored the click-chemistry-based enrichment approaches on protein and peptide levels with three cleavable click-chemistry ligands, respectively. By comparison, the approach of protein-based click-chemistry conjugation with acid-cleavable tags was demonstrated to permit the most cross-linked peptide identification. The advancement of this strategy enhanced the proteome-wide cross-linking analysis, constructing a 5,518-protein-protein-interaction network among 1,871 proteins with widely abundant distribution in cells. Therefore, all these results demonstrated the guideline value of our work for efficient cross-linked peptide enrichment, thus facilitating the in-depth profiling of protein interactome for functional analysis.
Collapse
Affiliation(s)
- Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| |
Collapse
|
10
|
Meng Y, Zhang L, Zhang L, Wang Z, Wang X, Li C, Chen Y, Shang S, Li L. CysModDB: a comprehensive platform with the integration of manually curated resources and analysis tools for cysteine posttranslational modifications. Brief Bioinform 2022; 23:6775608. [PMID: 36305460 PMCID: PMC9677505 DOI: 10.1093/bib/bbac460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
The unique chemical reactivity of cysteine residues results in various posttranslational modifications (PTMs), which are implicated in regulating a range of fundamental biological processes. With the advent of chemical proteomics technology, thousands of cysteine PTM (CysPTM) sites have been identified from multiple species. A few CysPTM-based databases have been developed, but they mainly focus on data collection rather than various annotations and analytical integration. Here, we present a platform-dubbed CysModDB, integrated with the comprehensive CysPTM resources and analysis tools. CysModDB contains five parts: (1) 70 536 experimentally verified CysPTM sites with annotations of sample origin and enrichment techniques, (2) 21 654 modified proteins annotated with functional regions and structure information, (3) cross-references to external databases such as the protein-protein interactions database, (4) online computational tools for predicting CysPTM sites and (5) integrated analysis tools such as gene enrichment and investigation of sequence features. These parts are integrated using a customized graphic browser and a Basket. The browser uses graphs to represent the distribution of modified sites with different CysPTM types on protein sequences and mapping these sites to the protein structures and functional regions, which assists in exploring cross-talks between the modified sites and their potential effect on protein functions. The Basket connects proteins and CysPTM sites to the analysis tools. In summary, CysModDB is an integrated platform to facilitate the CysPTM research, freely accessible via https://cysmoddb.bioinfogo.org/.
Collapse
Affiliation(s)
| | | | - Laizhi Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziyu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuanwen Wang
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Chan Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Chen
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Shipeng Shang
- Corresponding authors: Lei Li, Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China. Tel/Fax: +86 532 8581 2983; E-mail: ; Shipeng Shang, School of Basic Medicine, Qingdao University, Qingdao 266071, China. Tel.: +86 532 8595 1111; Fax: +86 532 8581 2983; E-mail:
| | - Lei Li
- Corresponding authors: Lei Li, Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China. Tel/Fax: +86 532 8581 2983; E-mail: ; Shipeng Shang, School of Basic Medicine, Qingdao University, Qingdao 266071, China. Tel.: +86 532 8595 1111; Fax: +86 532 8581 2983; E-mail:
| |
Collapse
|
11
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022; 61:e202200303. [PMID: 35302274 DOI: 10.1002/anie.202200303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Lysine acylation plays pivotal roles in cell physiology, including DNA transcription and repair, signal transduction, immune defense, metabolism, and many other key cellular processes. Molecular mechanisms of dysregulated lysine acylation are closely involved in the pathophysiological progress of many human diseases, most notably cancers. In recent years, chemical biology tools have become instrumental in studying the function of post-translational modifications (PTMs), identifying new "writers", "erasers" and "readers", and in targeted therapies. Here, we describe key developments in chemical biology approaches that have advanced the study of lysine acylation and its regulatory proteins (2016-2021). We further discuss the discovery of ligands (inhibitors and PROTACs) that are capable of targeting regulators of lysine acylation. Next, we discuss some current challenges of these chemical biology probes and suggest how chemists and biologists can utilize chemical probes with more discriminating capacity. Finally, we suggest some critical considerations in future studies of PTMs from our perspective.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Zhiyang Liu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhiqiang Xu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hongyan Sun
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
12
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yusheng Xie
- Shandong University School of Basic Medical Science 250012 Jinan CHINA
| | - Shubo Du
- National University of Singapore Department of Chemistry SINGAPORE
| | - Zhiyang Liu
- City University of Hong Kong chemistry HONG KONG
| | - Min Liu
- Shandong University School of Basic Medical Sciences CHINA
| | - Zhiqiang Xu
- City University of Hong Kong Department of Chemistry HONG KONG
| | - Xiaojie Wang
- Shandong University School of Basic Medical Sciences CHINA
| | - Jia Xuan Kee
- National University of Singapore Chemistry SINGAPORE
| | - Fan Yi
- Shandong University School of basic medical sciences CHINA
| | - Hongyan Sun
- City University of Hong Kong department of chemistry HONG KONG
| | - Shao Q. Yao
- National University of Singapore Department of Chemistry 3 Science Dr. 117543 Singapore SINGAPORE
| |
Collapse
|
13
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
14
|
Wei H, Zhen L, Wang S, Zhang Y, Wang K, Jia P, Zhang Y, Wu Z, Yang Q, Hou W, Lv J, Zhang P. De novo Lipogenesis in Astrocytes Promotes the Repair of Blood-Brain Barrier after Transient Cerebral Ischemia Through Interleukin-33. Neuroscience 2022; 481:85-98. [PMID: 34822949 DOI: 10.1016/j.neuroscience.2021.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes experience significant metabolic shifts in the "sensitive period" of neurological function recovery following cerebral ischemia. However, the changes in astrocyte lipid metabolism and their implications for neurological recovery remain unknown. In the present study, we employed a mouse middle cerebral artery occlusion model to investigate the changes in de novo lipogenesis and interleukin-33 (IL-33) production in astrocytes and elucidate their role in blood-brain barrier (BBB) repair in the subacute phase of cerebral ischemia. Neurological behavior evaluation was used to assess functional changes in mice. Pharmacological inhibition and astrocyte-specific downregulation of fatty acid synthase (FASN) were used to evaluate the role of de novo lipogenesis in brain injury. Intracerebroventricular administration of recombinant IL-33 was performed to study the contribution of IL-33 to BBB disruption. Extravasation of Evans blue dye, dextran and IgG were used to assess BBB integrity. Western blotting of tight junction proteins ZO-1, Occludin, and Claudin-5 were performed at defined time points to evaluate changes in BBB. It was found that de novo lipogenesis was activated, and IL-33 production increased in astrocytes at the subacute stage of cerebral ischemia injury. Inhibition of lipogenesis in astrocytes decreased IL-33 production in the peri-infarct area, deteriorated BBB damage and interfered with neurological recovery. In addition, supplementation of IL-33 alleviated BBB destruction and improved neurological recovery worsened by lipogenesis inhibition. These findings indicate that astrocyte lipogenesis increases the production of IL-33 in the peri-infarct area, which promotes BBB repair in the subacute phase of cerebral ischemia injury and improves long-term functional recovery.
Collapse
Affiliation(s)
- Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Luming Zhen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhixin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
15
|
Sun Y, Chen Y, Peng T. A Bioorthogonal Chemical Reporter for the Detection and Identification of Protein Lactylation. Chem Sci 2022; 13:6019-6027. [PMID: 35685793 PMCID: PMC9132054 DOI: 10.1039/d2sc00918h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
L-Lactylation is a recently discovered post-translational modification occurring on histone lysine residues to regulate gene expression. However, the substrate scope of lactylation, especially that in non-histone proteins, remains unknown, largely...
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yanchi Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| |
Collapse
|
16
|
Zhang D, Lu M, Chen C, Xu Y, Peng T. Fatty Acyl Sulfonyl Fluoride as an Activity-Based Probe for Profiling Fatty Acid-Associated Proteins in Living Cells. Chembiochem 2021; 23:e202100628. [PMID: 34918441 DOI: 10.1002/cbic.202100628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
17
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Losada de la Lastra A, Hassan S, Tate EW. Deconvoluting the biology and druggability of protein lipidation using chemical proteomics. Curr Opin Chem Biol 2021; 60:97-112. [PMID: 33221680 DOI: 10.1016/j.cbpa.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023]
Abstract
Lipids are indispensable cellular building blocks, and their post-translational attachment to proteins makes them important regulators of many biological processes. Dysfunction of protein lipidation is also implicated in many pathological states, yet its systematic analysis presents significant challenges. Thanks to innovations in chemical proteomics, lipidation can now be readily studied by metabolic tagging using functionalized lipid analogs, enabling global profiling of lipidated substrates using mass spectrometry. This has spearheaded the first deconvolution of their full scope in a range of contexts, from cells to pathogens and multicellular organisms. Protein N-myristoylation, S-acylation, and S-prenylation are the most well-studied lipid post-translational modifications because of their extensive contribution to the regulation of diverse cellular processes. In this review, we focus on recent advances in the study of these post-translational modifications, with an emphasis on how novel mass spectrometry methods have elucidated their roles in fundamental biological processes.
Collapse
Affiliation(s)
- Ana Losada de la Lastra
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Sarah Hassan
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
20
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
21
|
Li Y, Wang S, Chen Y, Li M, Dong X, Hang HC, Peng T. Site-specific chemical fatty-acylation for gain-of-function analysis of protein S-palmitoylation in live cells. Chem Commun (Camb) 2020; 56:13880-13883. [PMID: 33094750 DOI: 10.1039/d0cc06073a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein S-palmitoylation, or S-fatty-acylation, regulates many fundamental cellular processes in eukaryotes. Herein, we present a chemical fatty-acylation approach that involves site-specific incorporation of cycloalkyne-containing unnatural amino acids and subsequent bioorthogonal reactions with fatty-acyl tetrazines to install fatty-acylation mimics at target protein sites, allowing gain-of-function analysis of S-palmitoylation in live cells.
Collapse
Affiliation(s)
- Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun 2020; 11:4765. [PMID: 32958780 PMCID: PMC7505845 DOI: 10.1038/s41467-020-18565-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Fatty acids (FAs) are essential nutrients, but how they are transported into cells remains unclear. Here, we show that FAs trigger caveolae-dependent CD36 internalization, which in turn delivers FAs into adipocytes. During the process, binding of FAs to CD36 activates its downstream kinase LYN, which phosphorylates DHHC5, the palmitoyl acyltransferase of CD36, at Tyr91 and inactivates it. CD36 then gets depalmitoylated by APT1 and recruits another tyrosine kinase SYK to phosphorylate JNK and VAVs to initiate endocytic uptake of FAs. Blocking CD36 internalization by inhibiting APT1, LYN or SYK abolishes CD36-dependent FA uptake. Restricting CD36 at either palmitoylated or depalmitoylated state eliminates its FA uptake activity, indicating an essential role of dynamic palmitoylation of CD36. Furthermore, blocking endocytosis by targeting LYN or SYK inhibits CD36-dependent lipid droplet growth in adipocytes and high-fat-diet induced weight gain in mice. Our study has uncovered a dynamic palmitoylation-regulated endocytic pathway to take up FAs.
Collapse
|
23
|
Morrison E, Wegner T, Zucchetti AE, Álvaro-Benito M, Zheng A, Kliche S, Krause E, Brügger B, Hivroz C, Freund C. Dynamic palmitoylation events following T-cell receptor signaling. Commun Biol 2020; 3:368. [PMID: 32651440 PMCID: PMC7351954 DOI: 10.1038/s42003-020-1063-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Palmitoylation is the reversible addition of palmitate to cysteine via a thioester linkage. The reversible nature of this modification makes it a prime candidate as a mechanism for regulating signal transduction in T-cell receptor signaling. Following stimulation of the T-cell receptor we find a number of proteins are newly palmitoylated, including those involved in vesicle-mediated transport and Ras signal transduction. Among these stimulation-dependent palmitoylation targets are the v-SNARE VAMP7, important for docking of vesicular LAT during TCR signaling, and the largely undescribed palmitoyl acyltransferase DHHC18 that is expressed in two isoforms in T cells. Using our newly developed On-Plate Palmitoylation Assay (OPPA), we show DHHC18 is capable of palmitoylating VAMP7 at Cys183. Cellular imaging shows that the palmitoylation-deficient protein fails to be retained at the Golgi and to localize to the immune synapse upon T cell activation.
Collapse
Affiliation(s)
- Eliot Morrison
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Tatjana Wegner
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Miguel Álvaro-Benito
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Ashley Zheng
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Stefanie Kliche
- Otto-von-Guericke-University, Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Mass Spectrometry Unit, Robert-Rössle-Str 10, 13125, Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Christian Freund
- Freie Universität Berlin, Institute for Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
24
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Abstract
Bioorthogonal chemistry has offered an invaluable reactivity-based tool to chemical biology owing to its exquisite specificity in tagging a diverse set of biomolecules in their native environment. Despite tremendous progress in the field over the past decade, designing a suitable bioorthogonal chemical probe to investigate a given biological system remains a challenge. In this Perspective, we put forward a series of fitness factors that can be used to assess the performance of bioorthogonal chemical probes. The consideration of these criteria should encourage continuous innovation in bioorthogonal probe development as well as enhance the quality of biological data.
Collapse
Affiliation(s)
- Yulin Tian
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
26
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
27
|
A strategy to identify protein-N-myristoylation-dependent phosphorylation reactions of cellular proteins by using Phos-tag SDS-PAGE. PLoS One 2019; 14:e0225510. [PMID: 31751425 PMCID: PMC6872159 DOI: 10.1371/journal.pone.0225510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022] Open
Abstract
To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The difference in the banding pattern in Phos-tag SDS-PAGE between the WT and G2A-mutant FMNL2 indicated the presence of N-myristoylation-dependent phosphorylation sites in FMNL2. Phos-tag SDS-PAGE of FMNL2 mutants in which the putative phosphorylation sites listed in PhosphoSitePlus (an online database of phosphorylation sites) were changed to Ala revealed that Ser-171 and Ser-1072 are N-myristoylation-dependent phosphorylation sites in FMNL2. Similar experiments with FMNL3 demonstrated that N-myristoylation-dependent phosphorylation occurs at a single Ser residue at position 174, which is a Ser residue conserved between FMNL2 and FMNL3, corresponding to Ser-171 in FMNL2. The facts that phosphorylation of Ser-1072 in FMNL2 has been shown to play a critical role in integrin β1 internalization mediated by FMNL2 and that Ser-171 in FMNL2 and Ser-174 in FMNL3 are novel putative phosphorylation sites conserved between FMNL2 and FMNL3 indicate that the strategy used in this study is a useful tool for identifying and characterizing physiologically important phosphorylation reactions occurring on N-myristoylated proteins.
Collapse
|
28
|
Rhode H, Muckova P, Büchler R, Wendler S, Tautkus B, Vogel M, Moore T, Grosskreutz J, Klemm A, Nabity M. A next generation setup for pre-fractionation of non-denatured proteins reveals diverse albumin proteoforms each carrying several post-translational modifications. Sci Rep 2019; 9:11733. [PMID: 31409882 PMCID: PMC6692309 DOI: 10.1038/s41598-019-48278-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomic biomarker search requires the greatest analytical reproducibility and detailed information on altered proteoforms. Our protein pre-fractionation applies orthogonal native chromatography and conserves important features of protein variants such as native molecular weight, charge and major glycans. Moreover, we maximized reproducibility of sample pre-fractionation and preparation before mass spectrometry by parallelization and automation. In blood plasma and cerebrospinal fluid (CSF), most proteins, including candidate biomarkers, distribute into a multitude of chromatographic clusters. Plasma albumin, for example, divides into 15-17 clusters. As an example of our technique, we analyzed these albumin clusters from healthy volunteers and from dogs and identified cluster-typical modification patterns. Renal disease further modifies these patterns. In human CSF, we found only a subset of proteoforms with fewer modifications than in plasma. We infer from this example that our method can be used to identify and characterize distinct proteoforms and, optionally, enrich them, thereby yielding the characteristics of proteoform-selective biomarkers.
Collapse
Affiliation(s)
- Heidrun Rhode
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.
| | - Petra Muckova
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Rita Büchler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Pharmachem Straße 1, Pharmachem Pößneck GmbH & Co. KG, 07381, Pößneck, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Institute of Microbiology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Bärbel Tautkus
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Michaela Vogel
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Thomas Moore
- Analytik Jena, Konrad-Zuse-Str.1, 07745, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Andree Klemm
- KfH Kuratorium für Dialyse und Nierentransplantation e.V., Ernst-Ruska-Ring 19, 07745, Jena, Germany
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine, 4467 TAMU, Texas A&M University, College Station, TX, 77843-4467, Texas, USA
| |
Collapse
|
29
|
Zhou B, Wang Y, Yan Y, Mariscal J, Di Vizio D, Freeman MR, Yang W. Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- S-Acylated Proteins and Enables Deep S-Acylproteomic Analysis. Anal Chem 2019; 91:9858-9866. [PMID: 31251020 PMCID: PMC7451198 DOI: 10.1021/acs.analchem.9b01520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein S-acylation (also called palmitoylation) is a common post-translational modification whose deregulation plays a key role in the pathogenesis of many diseases. Acyl-biotinyl exchange (ABE), a widely used method for the enrichment of S-acylated proteins, has the potential of capturing the entire S-acylproteome in any type of biological sample. Here, we showed that current ABE methods suffer from a high background arising from the coisolation of non-S-acylated proteins. The background can be substantially reduced by an additional blockage of residual free cysteine residues with 2,2'-dithiodipyridine prior to the biotin-HPDP reaction. Coupling the low-background ABE (LB-ABE) method with label-free proteomics, 2 895 high-confidence candidate S-acylated proteins (including 1 591 known S-acylated proteins) were identified from human prostate cancer LNCaP cells, representing so-far the largest S-acylproteome data set identified in a single study. Immunoblotting analysis confirmed the S-acylation of five known and five novel prostate cancer-related S-acylated proteins in LNCaP cells and suggested that their S-acylation levels were about 0.6-1.8%. In summary, the LB-ABE method largely eliminates the coisolation of non-S-acylated proteins and enables deep S-acylproteomic analysis. It is expected to facilitate a much more comprehensive and accurate quantification of S-acylproteomes than previous ABE methods.
Collapse
Affiliation(s)
- Bo Zhou
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yang Wang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yiwu Yan
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Javier Mariscal
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Chemical Proteomic Analysis of S-Fatty Acylated Proteins and Their Modification Sites. Methods Mol Biol 2019. [PMID: 31152394 DOI: 10.1007/978-1-4939-9532-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein S-fatty-acylation, the covalent addition of a long-chain fatty acid, predominantly palmitate (S-palmitoylation), to cysteine, is a highly dynamic and regulated process that controls protein function and localization of membrane-associated proteins in eukaryotes. The analysis of S-fatty acylated peptides by mass spectrometry remains challenging due to the hydrophobic and potentially labile thioester linkage of the S-fatty acylated peptides.Here we describe an optimized protocol for the global analysis of S-palmitoylated proteins based on the combination of an alkyne-tagged chemical reporter of palmitoylation, alk-16 with hydroxylamine-selective hydrolysis of thioester bonds. This protocol decreased the number of false positive proteins and was applied to identify S-fatty acylation sites, providing modification sites for 44 proteins out of the 106 S-fatty acylated proteins identified.
Collapse
|
31
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
32
|
Wang J, Hao JW, Wang X, Guo H, Sun HH, Lai XY, Liu LY, Zhu M, Wang HY, Li YF, Yu LY, Xie C, Wang HR, Mo W, Zhou HM, Chen S, Liang G, Zhao TJ. DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane. Cell Rep 2019; 26:209-221.e5. [DOI: 10.1016/j.celrep.2018.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 11/01/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
|
33
|
Zhang S, Spiegelman NA, Lin H. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods Mol Biol 2019; 2009:137-147. [PMID: 31152401 DOI: 10.1007/978-1-4939-9532-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein fatty-acylation is an important posttranslational modification (PTM) and has been associated with many fundamental biological processes. Sirtuins, the nicotinamide adenine dinucleotide (NAD)-dependent class of histone deacetylases have been reported to possess lysine defatty-acylase activity. Comprehensive substrate profiling of sirtuins will help to establish the function of both protein lysine fatty acylation and its regulation by sirtuins. Here, we describe a chemical proteomic strategy to globally profile sirtuin defatty-acylation substrates and a fluorescent labeling method to validate sirtuin substrates.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Nicole A Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Kathayat RS, Dickinson BC. Measuring S-Depalmitoylation Activity In Vitro and In Live Cells with Fluorescent Probes. Methods Mol Biol 2019; 2009:99-109. [PMID: 31152398 PMCID: PMC7240838 DOI: 10.1007/978-1-4939-9532-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S-palmitoylation is a reversible lipid posttranslational modification (PTM) that can mediate protein localization, trafficking, interaction with membranes, and a host of other biophysical characteristics. Over the past decade, a suite of chemoproteomic strategies have uncovered the breadth of S-palmitoylation, revealing widespread susceptibility to modification by this PTM throughout the human proteome. A focal point of research toward understanding the role of S-palmitoylation in varied cellular processes has focused on understanding how "writer" and "eraser" proteins function together to control the levels of S-palmitoylation of target proteins. The spatial and temporal regulation of S-palmitoylation by its "erasers"-acyl protein thioesterases (APTs)-is not fully understood. Tools which enable monitoring of the activity levels of the APTs in real-time in live cells illuminate how spatial control of these enzymes redecorate the lipidation state of the local proteome. To this end, we have developed fluorescence-based depalmitoylation probes (DPPs), which report S-depalmitoylase activity in live cells. Using DPPs, we have demonstrated that S-depalmitoylase activity changes in response to growth factor stimulation, unveiling potential regulation of cell growth and metabolism by APTs. Additionally, we recently discovered APTs in mitochondria using targeted DPPs, indicating new roles for S-depalmitoylation in this critical cellular compartment. Here, we present detailed protocols on how to carry out in vitro S-depalmitoylase activity assays and live cell fluorescence imaging employing the growing DPP toolbox.
Collapse
|
35
|
Mohammadzadeh F, Hosseini V, Mehdizadeh A, Dani C, Darabi M. A method for the gross analysis of global protein acylation by gas-liquid chromatography. IUBMB Life 2018; 71:340-346. [DOI: 10.1002/iub.1975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Fatemeh Mohammadzadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences, Faculty of Medicine; 5166615731, Tabriz Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
- Endocrine Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV; 06107, Nice France
| | - Masoud Darabi
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| |
Collapse
|
36
|
Utsumi T, Matsuzaki K, Kiwado A, Tanikawa A, Kikkawa Y, Hosokawa T, Otsuka A, Iuchi Y, Kobuchi H, Moriya K. Identification and characterization of protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS One 2018; 13:e0206355. [PMID: 30427857 PMCID: PMC6235283 DOI: 10.1371/journal.pone.0206355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kanako Matsuzaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aya Kiwado
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Ayane Tanikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Kikkawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takuro Hosokawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aoi Otsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshihito Iuchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
37
|
Wright MH. Chemical Proteomics of Host-Microbe Interactions. Proteomics 2018; 18:e1700333. [DOI: 10.1002/pmic.201700333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Megan H. Wright
- Astbury Centre for Structural Molecular Biology; School of Chemistry; University of Leeds; Leeds LS2 9JT United Kingdom
| |
Collapse
|
38
|
Zaręba-Kozioł M, Figiel I, Bartkowiak-Kaczmarek A, Włodarczyk J. Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis. Front Mol Neurosci 2018; 11:175. [PMID: 29910712 PMCID: PMC5992399 DOI: 10.3389/fnmol.2018.00175] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Thinon E, Fernandez JP, Molina H, Hang HC. Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites. J Proteome Res 2018; 17:1907-1922. [PMID: 29575903 PMCID: PMC6104640 DOI: 10.1021/acs.jproteome.8b00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-Fatty-acylation is the covalent attachment of long chain fatty acids, predominately palmitate (C16:0, S-palmitoylation), to cysteine (Cys) residues via a thioester linkage on proteins. This post-translational and reversible lipid modification regulates protein function and localization in eukaryotes and is important in mammalian physiology and human diseases. While chemical labeling methods have improved the detection and enrichment of S-fatty-acylated proteins, mapping sites of modification and characterizing the endogenously attached fatty acids are still challenging. Here, we describe the integration and optimization of fatty acid chemical reporter labeling with hydroxylamine-mediated enrichment of S-fatty-acylated proteins and direct tagging of modified Cys residues to selectively map lipid modification sites. This afforded improved enrichment and direct identification of many protein S-fatty-acylation sites compared to previously described methods. Notably, we directly identified the S-fatty-acylation sites of IFITM3, an important interferon-stimulated inhibitor of virus entry, and we further demonstrated that the highly conserved Cys residues are primarily modified by palmitic acid. The methods described here should facilitate the direct analysis of protein S-fatty-acylation sites and their endogenously attached fatty acids in diverse cell types and activation states important for mammalian physiology and diseases.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
| | - Joseph P. Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
40
|
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. THE PLANT CELL 2018; 30:543-562. [PMID: 29453228 PMCID: PMC5894833 DOI: 10.1105/tpc.17.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 05/05/2023]
Abstract
N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
41
|
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Front Immunol 2018; 8:2003. [PMID: 29403483 PMCID: PMC5780409 DOI: 10.3389/fimmu.2017.02003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed.
Collapse
Affiliation(s)
- Justyna Sobocińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Paula Roszczenko-Jasińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Qiu T, Kathayat RS, Cao Y, Beck MW, Dickinson BC. A Fluorescent Probe with Improved Water Solubility Permits the Analysis of Protein S-Depalmitoylation Activity in Live Cells. Biochemistry 2018; 57:221-225. [PMID: 29023093 PMCID: PMC5823605 DOI: 10.1021/acs.biochem.7b00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
S-Palmitoylation is an abundant lipid post-translational modification that is dynamically installed on and removed from target proteins to regulate their activity and cellular localization. A dearth of tools for studying the activities and regulation of protein S-depalmitoylases, thioesterase "erasers" of protein cysteine S-palmitoylation, has contributed to an incomplete understanding of the role of dynamic S-palmitoylation in regulating proteome lipidation. Recently, we developed "depalmitoylation probes" (DPPs), small molecule probes that become fluorescent upon S-depalmitoylase enzymatic activity. To be suitable for application in live cells, the first-generation DPPs relied on a shorter lipid substrate (C8 vs naturally occurring C16), which enhanced solubility and cell permeability. However, the use of an unnatural lipid substrate on the probes potentially limits the utility of the approach. Herein, we present a new member of the DPP family, DPP-5, which features an anionic carboxylate functional group that increases the probe water solubility. The enhanced water solubility of DPP-5 permits the use of a natural, palmitoylated substrate (C16), rather than a surrogate lipid. We show that DPP-5 is capable of monitoring endogenous S-depalmitoylases in live mammalian cells and that it can reveal changes in S-depalmitoylation levels due to lipid stress. DPP-5 should prove to be a useful new tool for probing the regulation of proteome lipidation through dynamic S-depalmitoylation.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Yang Cao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Michael W. Beck
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
43
|
Peng T, Hang HC. Chemical Proteomic Profiling of Protein Fatty-Acylation in Microbial Pathogens. Curr Top Microbiol Immunol 2018; 420:93-110. [PMID: 30128826 DOI: 10.1007/82_2018_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein fatty-acylation describes the covalent modification of protein with fatty acids during or after translation. Chemical proteomic profiling methods have provided new opportunities to explore protein fatty-acylation in microbial pathogens. Recent studies suggest that protein fatty-acylation is essential to survival and pathogenesis of eukaryotic pathogens such as parasites and fungi. Moreover, fatty-acylation in host cells can be exploited or manipulated by pathogenic bacteria. Herein, we first review the prevalent classes of fatty-acylation in microbial pathogens and the chemical proteomic profiling methods for their global analysis. We then summarize recent fatty-acylation profiling studies performed in eukaryotic pathogens and during bacterial infections, highlighting how they contribute to functional characterization of fatty-acylation under these contexts.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
44
|
Gao X, Hannoush RN. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology. Cell Chem Biol 2017; 25:236-246. [PMID: 29290622 DOI: 10.1016/j.chembiol.2017.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Protein palmitoylation plays diverse roles in regulating the trafficking, stability, and activity of cellular proteins. The advent of click chemistry has propelled the field of protein palmitoylation forward by providing specific, sensitive, rapid, and easy-to-handle methods for studying protein palmitoylation. This year marks the 10th anniversary since the first click chemistry-based fatty acid probes for detecting protein lipid modifications were reported. The goal of this review is to highlight key biological advancements in the field of protein palmitoylation during the past 10 years. In particular, we discuss the impact of click chemistry on enabling protein palmitoylation proteomics methods, uncovering novel lipid modifications on proteins and elucidating their functions, as well as the development of non-radioactive biochemical and enzymatic assays. In addition, this review provides context for building and exploring new research avenues in protein palmitoylation through the use of clickable fatty acid probes.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
45
|
Jing H, Zhang X, Wisner SA, Chen X, Spiegelman NA, Linder ME, Lin H. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. eLife 2017; 6:32436. [PMID: 29239724 PMCID: PMC5745086 DOI: 10.7554/elife.32436] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation.
Collapse
Affiliation(s)
- Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Stephanie A Wisner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Xiao Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicole A Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| |
Collapse
|
46
|
Fowler NJ, Blanford CF, de Visser SP, Warwicker J. Features of reactive cysteines discovered through computation: from kinase inhibition to enrichment around protein degrons. Sci Rep 2017; 7:16338. [PMID: 29180682 PMCID: PMC5703995 DOI: 10.1038/s41598-017-15997-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
Large-scale characterisation of cysteine modification is enabling study of the physicochemical determinants of reactivity. We find that location of cysteine at the amino terminus of an α-helix, associated with activity in thioredoxins, is under-represented in human protein structures, perhaps indicative of selection against background reactivity. An amino-terminal helix location underpins the covalent linkage for one class of kinase inhibitors. Cysteine targets for S-palmitoylation, S-glutathionylation, and S-nitrosylation show little correlation with pKa values predicted from structures, although flanking sequences of S-palmitoylated sites are enriched in positively-charged amino acids, which could facilitate palmitoyl group transfer to substrate cysteine. A surprisingly large fraction of modified sites, across the three modifications, would be buried in native protein structure. Furthermore, modified cysteines are (on average) closer to lysine ubiquitinations than are unmodified cysteines, indicating that cysteine redox biology could be associated with protein degradation and degron recognition.
Collapse
Affiliation(s)
- Nicholas J Fowler
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.,School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Christopher F Blanford
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.,School of Materials, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.,School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jim Warwicker
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom. .,School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.
| |
Collapse
|
47
|
Lum KM, Sato Y, Beyer BA, Plaisted WC, Anglin JL, Lairson LL, Cravatt BF. Mapping Protein Targets of Bioactive Small Molecules Using Lipid-Based Chemical Proteomics. ACS Chem Biol 2017; 12:2671-2681. [PMID: 28930429 PMCID: PMC5650530 DOI: 10.1021/acschembio.7b00581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipids play critical roles in cell biology, often through direct interactions with proteins. We recently described the use of photoreactive lipid probes combined with quantitative mass spectrometry to globally map lipid-protein interactions, and the effects of drugs on these interactions, in cells. Here, we investigate the broader potential of lipid-based chemical proteomic probes for determining the cellular targets of biologically active small molecules, including natural product derivatives and repurposed drugs of ill-defined mechanisms. We identify the prostaglandin-regulatory enzyme PTGR2 as a target of the antidiabetic hops derivative KDT501 and show that miconazole-an antifungal drug that attenuates disease severity in preclinical models of multiple sclerosis-inhibits SGPL1, an enzyme that degrades the signaling lipid sphingosine-1-phosphate, drug analogues of which are used to treat multiple sclerosis in humans. Our findings highlight the versatility of lipid-based chemical proteomics probes for mapping small molecule-protein interactions in human cells to gain mechanistic understanding of bioactive compounds.
Collapse
Affiliation(s)
- Kenneth M. Lum
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoshiaki Sato
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittney A. Beyer
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Justin L. Anglin
- California Institute for Biomedical Research, La Jolla, CA 92037, USA
| | - Luke L. Lairson
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F. Cravatt
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Beck MW, Kathayat RS, Cham CM, Chang EB, Dickinson BC. Michael addition-based probes for ratiometric fluorescence imaging of protein S-depalmitoylases in live cells and tissues. Chem Sci 2017; 8:7588-7592. [PMID: 29568422 PMCID: PMC5848818 DOI: 10.1039/c7sc02805a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
The reversible modification of cysteine residues through thioester formation with palmitate (protein S-palmitoylation) is a prevalent chemical modification that regulates the function, localization, and stability of many proteins. Current methods for monitoring the "erasers" of S-palmitoylation, acyl-protein thioesterases (APTs), rely on destructive proteomic methods or "turn-on" probes, precluding deployment in heterogeneous samples such as primary tissues. To address these challenges, we present the design, synthesis, and biological evaluation of Ratiometric Depalmitoylation Probes (RDPs). RDPs respond to APTs with a robust ratiometric change in fluorescent signal both in vitro and in live cells. Moreover, RDPs can monitor endogenous APT activities in heterogeneous primary human tissues such as colon organoids, presaging the utility of these molecules in uncovering novel roles for APTs in metabolic regulation.
Collapse
Affiliation(s)
- Michael W Beck
- Department of Chemistry , The University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , USA .
| | - Rahul S Kathayat
- Department of Chemistry , The University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , USA .
| | - Candace M Cham
- Department of Medicine , The University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , USA
| | - Eugene B Chang
- Department of Medicine , The University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , USA
| | - Bryan C Dickinson
- Department of Chemistry , The University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , USA .
| |
Collapse
|
49
|
Percher A, Thinon E, Hang H. Mass-Tag Labeling Using Acyl-PEG Exchange for the Determination of Endogenous Protein S-Fatty Acylation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:14.17.1-14.17.11. [PMID: 28762493 DOI: 10.1002/cpps.36] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The covalent coupling of fatty acids to proteins provides an important mechanism of regulation in cells. In eukaryotes, cysteine fatty acylation (S-fatty acylation) has been shown to be critical for protein function in a variety of cellular pathways as well as microbial pathogenesis. While methods developed over the past decade have improved the detection and profiling of S-fatty acylation, these are hampered in their ability to characterize endogenous protein S-fatty acylation levels under physiological conditions. Furthermore, understanding the contribution of specific sites and levels of S-fatty acylation remains a major challenge. To evaluate S-fatty acylation of endogenous proteins as well as to determine the number of S-fatty acylation events, we developed the acyl-PEG exchange (APE) that utilizes cysteine-specific chemistry to exchange S-fatty acylation sites with mass-tags of defined size, which can be readily observed by western blotting. APE provides a readily accessible approach to investigate endogenous S-fatty acylation from any sample source, with high sensitivity and broad applicability that complements the current toolbox of methods for thioester-based post-translational modifications. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Avital Percher
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York
| | - Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York
| | - Howard Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York
| |
Collapse
|
50
|
Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW. Dynamic Protein Acylation: New Substrates, Mechanisms, and Drug Targets. Trends Biochem Sci 2017; 42:566-581. [PMID: 28602500 DOI: 10.1016/j.tibs.2017.04.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/04/2023]
Abstract
Post-translational attachment of lipids to proteins is found in all organisms, and is important for many biological processes. Acylation with myristic and palmitic acids are among the most common lipid modifications, and understanding reversible protein palmitoylation dynamics has become a particularly important goal. Linking acyltransferase enzymes to disease states can be challenging due to a paucity of robust models, compounded by functional redundancy between many palmitoyl transferases; however, in cases such as Wnt or Hedgehog signalling, small molecule inhibitors have been identified, with some progressing to clinical trials. In this review, we present recent developments in our understanding of protein acylation in human health and disease through use of chemical tools, global profiling of acylated proteomes, and functional studies of specific protein targets.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Monica Faronato
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Remigiusz A Serwa
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|