1
|
Li M, Yan X, Zhang L, Liu X, Liu Y, Wang Q, Li J. Improved preclinical drug metabolism and pharmacokinetics of pibothiadine (HEC121210), a novel hepatitis B virus capsid assembly modulator. Xenobiotica 2024; 54:701-710. [PMID: 39058618 DOI: 10.1080/00498254.2024.2381223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Pibothiadine (PBD; HEC121120) is a novel hepatitis B virus capsid assembly modulator based on GLS4 (morphothiadine) and has inhibitory activities against resistant strains.To assess the overall preclinical drug metabolism and pharmacokinetics (DMPK) properties of PBD, in vivo pharmacokinetics studies in rats and dogs have been performed along with a series of in vitro metabolism assays.The oral bioavailability of PBD in rats and dogs might be related to its medium permeability in Caco-2 cells and largely be impacted by the pH-dependent solubility. PBD was highly distributed to the liver where the local exposure was 16.4 fold of the system exposure. PBD showed relatively low metabolic rate in recombinant human cytochrome P450 enzymes, whereas low to moderate in vitro clearance in liver microsomes and low (dog) to moderate (rat) in vivo clearance. Furthermore, β-oxidation and dehydrogenation were proposed as the primary metabolic pathways of PBD in rats.Compared to GLS4, the higher systemic exposure of PBD might be attributed to its improved oral absorption and metabolic stability. In addition, the enhanced liver/plasma exposure ratio could further increase the local exposure around the target. These improved DMPK properties might indicate better development of PBD in the clinical phase.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Xingguo Yan
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Li Zhang
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Xinchang Liu
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Yayi Liu
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Qian Wang
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Jing Li
- State Key Laboratory for Anti-infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, China
| |
Collapse
|
2
|
Hofmann S, Luther J, Plank V, Oswald A, Mai J, Simons I, Miller J, Falcone V, Hansen-Palmus L, Hengel H, Nassal M, Protzer U, Schreiner S. Arsenic trioxide impacts hepatitis B virus core nuclear localization and efficiently interferes with HBV infection. Microbiol Spectr 2024; 12:e0378823. [PMID: 38567974 PMCID: PMC11064512 DOI: 10.1128/spectrum.03788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/03/2024] Open
Abstract
The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julius Luther
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Verena Plank
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Oswald
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ilka Simons
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julija Miller
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Lea Hansen-Palmus
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Amblard F, Chen Z, Wiseman J, Zhou S, Liu P, Salman M, Verma K, Azadi N, Downs-Bowen J, Tao S, Kumari A, Zhang Q, Smith DB, Patel D, Bassit L, Schinazi RF. Synthesis and evaluation of highly potent HBV capsid assembly modulators (CAMs). Bioorg Chem 2023; 141:106923. [PMID: 37871391 PMCID: PMC10765384 DOI: 10.1016/j.bioorg.2023.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health burden. It affects more than 290 million individuals worldwide and is responsible for approximately 900,000 deaths annually. Anti-HBV treatment with a nucleoside analog in combination with pegylated interferon are considered first-line therapy for patients with chronic HBV infection and liver inflammation. However, because cure rates are low, most patients will require lifetime treatment. HBV Capsid Assembly Modulators (CAMs) have emerged as a promising new class of compounds as they can affect levels of HBV covalently closed-circular DNA (cccDNA) associated with viral persistence. SAR studies around the core structure of lead HBV CAM GLP-26 (Fig. 1B) was performed and led to the discovery of non-toxic compound 10a displaying sub-nanomolar anti-HBV activity. Advanced toxicity and cellular pharmacology profiles of compounds 10a were also established and the results are discussed herein.
Collapse
Affiliation(s)
- Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Zhe Chen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - John Wiseman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shaoman Zhou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Peng Liu
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mohammad Salman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kiran Verma
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Niloufar Azadi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jessica Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amita Kumari
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Qingling Zhang
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - David B Smith
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Leda Bassit
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Nayak S, Gowda J, Abbas SA, Kim H, Han SB. Recent Advances in the Development of Sulfamoyl-Based Hepatitis B Virus Nucleocapsid Assembly Modulators. Viruses 2023; 15:2367. [PMID: 38140607 PMCID: PMC10747759 DOI: 10.3390/v15122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.
Collapse
Affiliation(s)
- Sandesha Nayak
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jayaraj Gowda
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Syed Azeem Abbas
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyejin Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Hwang N, Wu S, Ban H, Luo H, Ma J, Cheng J, Zhao Q, Laney JA, Du N, Guo J, Suresh M, Shen L, Tolufashe G, Viswanathan U, Kulp J, Lam P, Chang J, Clement JA, Menne S, Guo JT, Du Y. Identification of novel tetrahydroquinoxaline derived phenyl ureas as modulators of the hepatitis B virus nucleocapsid assembly. Eur J Med Chem 2023; 259:115634. [PMID: 37499290 PMCID: PMC10753860 DOI: 10.1016/j.ejmech.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
A key step of hepatitis B virus (HBV) replication is the selective packaging of pregenomic RNA (pgRNA) by core protein (Cp) dimers, forming a nucleocapsid where the reverse transcriptional viral DNA replication takes place. One approach in the development of new anti-HBV drugs is to disrupt the assembly of HBV nucleocapsids by misdirecting Cp dimers to assemble morphologically normal capsids devoid of pgRNA. In this study, we built upon our previous discovery of benzamide-derived HBV capsid assembly modulators by exploring fused bicyclic scaffolds with an exocyclic amide that is β, γ to the fused ring, and identified 1,2,3,4-tetrahydroquinoxaline derived phenyl ureas as a novel scaffold. Structure-activity relationship studies showed that a favorable hydrophobic substitution can be tolerated at the 2-position of the 1,2,3,4-tetrahydroquinoxaline core, and the resulting compound 88 demonstrated comparable or improved antiviral potencies in mouse and human hepatocyte-derived HBV-replicating cell lines compared to our previously reported benzamide compound, 38017 (8). In addition, a novel bis-urea series based on 1,2,3,4-tetrahydroquinoxaline was also found to inhibit HBV DNA replication with sub-micromolar EC50 values. The mode of action of these compounds is consistent with specific inhibition of pgRNA encapsidation into nucleocapsids in hepatocytes.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Shuo Wu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Pudong New District, Shanghai, 200127, China
| | - Huixin Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jessilyn A Laney
- United States Naval Academy, 121 Blake Rd, Annapolis, MD, 21402, USA
| | - Na Du
- Pharmaron, 6 Taihe Road, BDA, Beijing, 100176, China
| | - Junyang Guo
- Pharmaron, 6 Taihe Road, BDA, Beijing, 100176, China
| | - Manasa Suresh
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Liangxian Shen
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Gideon Tolufashe
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Patrick Lam
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jason A Clement
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Stephan Menne
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
7
|
Detta E, Corcuera A, Urban A, Goldner T, Bonsmann S, Engel F, May MM, Buschmann H, Fianchini M, Alza E, Pericàs MA, Pushkarev PA, Varenyk AO, Yakovyuk TY, Homon AA, Sokoliuk PA, Smaliy R, Donald A. Structure-based Design of Novel Hepatitis B Virus Capsid Assembly Modulators. Bioorg Med Chem Lett 2023; 93:129412. [PMID: 37499987 DOI: 10.1016/j.bmcl.2023.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Small-molecule capsid assembly modulators (CAMs) have been recently recognized as promising antiviral agents for curing chronic hepatitis B virus (HBV) infection. A target-based in silico screening study is described, aimed towards the discovery of novel HBV CAMs. Initial optimization of four weakly active screening hits was performed via focused library synthesis. Lead compound 42 and close analogues 56 and 57 exhibited in vitro potency in the sub- and micromolar range along with good physico-chemical properties and were further evaluated in molecular docking and mechanism of action studies.
Collapse
Affiliation(s)
- Elena Detta
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany; Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Angelica Corcuera
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Andreas Urban
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Thomas Goldner
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany.
| | - Susanne Bonsmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Florian Engel
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Marina M May
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Helmut Buschmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Esther Alza
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | | | | | | | - Anton A Homon
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | | | - Radomyr Smaliy
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alastair Donald
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| |
Collapse
|
8
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
9
|
Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat Commun 2023; 14:471. [PMID: 36709212 PMCID: PMC9884277 DOI: 10.1038/s41467-023-36219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.
Collapse
|
10
|
Zang J, Liu M, Liu H, Ding L. A molecular simulation study of hepatitis B virus core protein and the nuclear protein allosteric modulators of phthalazinone derivatives. Phys Chem Chem Phys 2022; 24:23209-23225. [PMID: 36129214 DOI: 10.1039/d2cp02946d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis B virus, causing hepatitis, cirrhosis, liver failure, and liver cancer, poses a serious threat to human health, and the currently approved drugs still cannot eliminate the virus completely. HBV core protein allosteric modulators (CpAMs) with a phthalazinone structure which targets the HBV core (HBc) protein have been seen as a new kind of drug because of their excellent antiviral effects. This study explores the structure-activity relationship and binding mechanism of phthalazinone molecules through three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics, and binding free energy calculation and decomposition studies. In addition, CoMFA and CoMSIA models revealed that the steric field, the hydrophobic field, and the hydrogen bond acceptor field may play important roles in the binding process. The molecular docking and dynamics disclosed the most likely binding pose of phthalazinone derivatives with the HBc protein. The binding free energy calculation and decomposition analysis indicated that the van der Waals force was the driving force and that ValE124, ThrD109, ThrE128, LeuD140, IleD105, PheD110, ThrD33, and TrpD102 were the key residues. This study provides an important theoretical basis for the design and optimization of phthalazinone compounds.
Collapse
Affiliation(s)
- Jieying Zang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Huan Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
11
|
Ivanova Bencheva L, Donnici L, Ferrante L, Prandi A, Sinisi R, De Matteo M, Randazzo P, Conti M, Di Lucia P, Bono E, Giustini L, Vittoria Orsale M, Patsilinakos A, Monteagudo E, Iannacone M, Summa V, Guidotti LG, De Francesco R, Di Fabio R. Discovery and Antiviral Profile of New Sulfamoylbenzamide Derivatives as HBV Capsid Assembly Modulators. Bioorg Med Chem Lett 2022; 73:128904. [PMID: 35868496 DOI: 10.1016/j.bmcl.2022.128904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.
Collapse
Affiliation(s)
- Leda Ivanova Bencheva
- Promidis, Via Olgettina 60, 20132 Milano, Italy; INGM, National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Via Francesco Sforza, 35, 20122 Milan, Italy
| | | | | | | | | | | | - Pietro Randazzo
- INGM, National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Via Francesco Sforza, 35, 20122 Milan, Italy
| | - Matteo Conti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | | | | | - Edith Monteagudo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Matteo Iannacone
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Vial Domenico Montesano 49, 80131, Naples, Italy
| | - Vincenzo Summa
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Luca G Guidotti
- INGM, National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Via Francesco Sforza, 35, 20122 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Raffaele De Francesco
- Promidis, Via Olgettina 60, 20132 Milano, Italy; IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | | |
Collapse
|
12
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
13
|
Spunde K, Vigante B, Dubova UN, Sipola A, Timofejeva I, Zajakina A, Jansons J, Plotniece A, Pajuste K, Sobolev A, Muhamadejev R, Jaudzems K, Duburs G, Kozlovska T. Design and Synthesis of Hepatitis B Virus (HBV) Capsid Assembly Modulators and Evaluation of Their Activity in Mammalian Cell Model. Pharmaceuticals (Basel) 2022; 15:ph15070773. [PMID: 35890072 PMCID: PMC9317397 DOI: 10.3390/ph15070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Capsid assembly modulators (CAMs) have emerged as a promising class of antiviral agents. We studied the effects of twenty-one newly designed and synthesized CAMs including heteroaryldihydropyrimidine compounds (HAPs), their analogs and standard compounds on hepatitis B virus (HBV) capsid assembly. Cytoplasmic expression of the HBV core (HBc) gene driven by the exogenously delivered recombinant alphavirus RNA replicon was used for high level production of the full-length HBc protein in mammalian cells. HBV capsid assembly was assessed by native agarose gel immunoblot analysis, electron microscopy and inhibition of virion secretion in HepG2.2.15 HBV producing cell line. Induced fit docking simulation was applied for modelling the structural relationships of the synthesized compounds and HBc. The most efficient were the HAP class compounds—dihydropyrimidine 5-carboxylic acid n-alkoxyalkyl esters, which induced the formation of incorrectly assembled capsid products and their accumulation within the cells. HBc product accumulation in the cells was not detected with the reference HAP compound Bay 41-4109, suggesting different modes of action. A significant antiviral effect and substantially reduced toxicity were revealed for two of the synthesized compounds. Two new HAP compounds revealed a significant antiviral effect and a favorable toxicity profile that allows these compounds to be considered promising leads and drug candidates for the treatment of HBV infection. The established alphavirus based HBc expression approach allows for the specific selection of capsid assembly modulators directly in the natural cell environment.
Collapse
Affiliation(s)
- Karina Spunde
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
- Correspondence: (K.S.); (B.V.)
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
- Correspondence: (K.S.); (B.V.)
| | - Unda Nelda Dubova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anda Sipola
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Irena Timofejeva
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Ruslan Muhamadejev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.S.); (A.P.); (K.P.); (A.S.); (R.M.); (K.J.); (G.D.)
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (U.N.D.); (I.T.); (A.Z.); (J.J.); (T.K.)
| |
Collapse
|
14
|
Pavlova A, Bassit L, Cox BD, Korablyov M, Chipot C, Patel D, Lynch DL, Amblard F, Schinazi RF, Gumbart JC. The Mechanism of Action of Hepatitis B Virus Capsid Assembly Modulators Can Be Predicted from Binding to Early Assembly Intermediates. J Med Chem 2022; 65:4854-4864. [PMID: 35290049 PMCID: PMC9026740 DOI: 10.1021/acs.jmedchem.1c02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly. Specifically, the assembly intermediates with bound misdirecting CAMs appear to be flattened relative to those with bound accelerators. Finally, the potency of CAMs within the same class was studied. We find that an increased number of contacts with the capsid protein and favorable binding energies inferred from free energy perturbation calculations are indicative of increased potency.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Maksym Korablyov
- MIT Media Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Christophe Chipot
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Laboratoire international associé CNRS-UIUC, UMR 7019, Université de Lorraine, B.P. 70239, 54506 Vandæuvre-lès-Nancy, France
| | - Dharmeshkumar Patel
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Diane L Lynch
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - James C Gumbart
- School of Physics and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Cole AG, Kultgen SG, Mani N, Ardzinski A, Fan KY, Thi EP, Dorsey BD, Stever K, Chiu T, Tang S, Daly O, Phelps JR, Harasym T, Olland A, Suto RK, Sofia MJ. The identification of highly efficacious functionalised tetrahydrocyclopenta[ c]pyrroles as inhibitors of HBV viral replication through modulation of HBV capsid assembly. RSC Med Chem 2022; 13:343-349. [PMID: 35434625 PMCID: PMC8942244 DOI: 10.1039/d1md00318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.
Collapse
Affiliation(s)
- Andrew G. Cole
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | | | - Kristi Yi Fan
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Emily P. Thi
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Bruce D. Dorsey
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Kim Stever
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Tim Chiu
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Sunny Tang
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Owen Daly
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Janet R. Phelps
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Troy Harasym
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Andrea Olland
- Xtal BioStructures Inc.12 Michigan DriveNatickMA 01760USA
| | - Robert K. Suto
- Xtal BioStructures Inc.12 Michigan DriveNatickMA 01760USA
| | | |
Collapse
|
16
|
Taverniti V, Ligat G, Debing Y, Kum DB, Baumert TF, Verrier ER. Capsid Assembly Modulators as Antiviral Agents against HBV: Molecular Mechanisms and Clinical Perspectives. J Clin Med 2022; 11:1349. [PMID: 35268440 PMCID: PMC8911156 DOI: 10.3390/jcm11051349] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.
Collapse
Affiliation(s)
- Valerio Taverniti
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Yannick Debing
- Aligos Belgium BV, 3001 Leuven, Belgium; (Y.D.); (D.B.K.)
| | | | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| |
Collapse
|
17
|
Hwang N, Ban H, Wu S, McGuire K, Hernandez E, Chen J, Zhao Q, Suresh M, Blass B, Viswanathan U, Kulp J, Chang J, Clement J, Menne S, Guo JT, Du Y. 4-Oxooctahydroquinoline-1(2H)-carboxamides as hepatitis B virus (HBV) capsid core protein assembly modulators. Bioorg Med Chem Lett 2022; 58:128518. [PMID: 34979256 PMCID: PMC8792325 DOI: 10.1016/j.bmcl.2021.128518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) core protein, the building block of the HBV capsid, plays multiple roles in viral replication, and is an attractive target for development of antiviral agents with a new mechanism of action. In addition to the heteroaryldihydropyrimidines (HAPs), sulfamoylbenzamides (SBAs), dibenzothiazepine derivatives (DBTs), and sulfamoylpyrrolamides (SPAs) that inhibit HBV replication by modulation of viral capsid assembly and are currently under clinical trials for the treatment of chronic hepatitis B (CHB), other chemical structures with activity to modulate HBV capsid assembly have also been explored. Here we describe our continued optimization of a benzamide originating from our high throughput screening. A new bicyclic carboxamide lead featuring an electron deficient non-planar core structure was discovered. Evaluations of its ADMET (absorption, distribution, metabolism, excretion and toxicity) and pharmacokinetic (PK) profiles demonstrate improved metabolic stability and good bioavailability.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA, Contribute equally
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Pudong New District, Shanghai 200127, China, Contribute equally
| | - Shuo Wu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA, Contribute equally
| | - Kelly McGuire
- Temple University, 1801 N Broad St, Philadelphia, PA 191222
| | - Ellen Hernandez
- Delaware Valley university, 700 E Butler Ave, Doylestown, PA 18901
| | - Junjun Chen
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Manasa Suresh
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC 20057
| | - Benjamin Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences 3307 North Broad Street, Philadelphia, PA 19140
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jason Clement
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Stephan Menne
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC 20057
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
18
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
19
|
Kim H, Ko C, Lee JY, Kim M. Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy. Molecules 2021; 26:molecules26247420. [PMID: 34946502 PMCID: PMC8705634 DOI: 10.3390/molecules26247420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.
Collapse
Affiliation(s)
- Hyejin Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| | | | | | - Meehyein Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| |
Collapse
|
20
|
Wang C, Zhai N, Zhao Y, Wu F, Luo X, Ju X, Liu G, Liu H. Exploration of Novel Hepatitis B Virus Capsid Assembly Modulators by Integrated Molecular Simulations. ChemistrySelect 2021. [DOI: 10.1002/slct.202102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
- School of Materials Science and Engineering Zhengzhou University No.100 Science Avenue Zhengzhou 450001 Henan P. R. China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 Hubei P. R. China
| | - Hui Liu
- Department of Hematology Renmin Hospital of Wuhan University Wuhan 430060 Hubei P. R. China
| |
Collapse
|
21
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
22
|
Lv K, Wu S, Tao Z, Wang A, Xu S, Yang L, Gao Q, Wang A, Qin X, Jiang B, Wu W, Jia X, Li Y, Jiang J, Liu M. Identification of (6S)-cyclopropyl-6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamines as new HBV capsid assembly modulators. Eur J Med Chem 2021; 228:113974. [PMID: 34772528 DOI: 10.1016/j.ejmech.2021.113974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
GYH2-18 is a type II HBV CAM with 6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamine (DPPC) skeleton discovered by Roche INC. A series of GYH2-18 derivatives were designed, synthesized and evaluated for their anti-HBV activity. Two compounds 2f and 3k exhibited excellent anti-HBV activity, low cytotoxicity and accepted oral PK profiles. Chiral separation of 2f and 3k was conducted successfully, and (6S)-cyclopropyl DPPC isomers 2f-1, 2f-3, 3k-1 and 3k-3 were identified to be much more active than the corresponding (6R)-ones. The preliminary structure-activity relationship, particle gel assay and molecular modeling studies were also discussed, which provide useful indications for guiding the further rational design of new (6S)-cyclopropyl DPPC analogues.
Collapse
Affiliation(s)
- Kai Lv
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeyu Tao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aoyu Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shijie Xu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiang Gao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Qin
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenhao Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingliang Liu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
24
|
Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021; 173:105864. [PMID: 34474100 PMCID: PMC8405237 DOI: 10.1016/j.phrs.2021.105864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.
Collapse
Affiliation(s)
- Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India.
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
25
|
Sabnis RW. Combination Therapy of RNA Interference and Small Molecules for Treating Hepatitis B Virus Infection. ACS Med Chem Lett 2021; 12:858-859. [PMID: 34141056 PMCID: PMC8201480 DOI: 10.1021/acsmedchemlett.1c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
26
|
Identification of hepatitis B virus core protein residues critical for capsid assembly, pgRNA encapsidation and resistance to capsid assembly modulators. Antiviral Res 2021; 191:105080. [PMID: 33933516 DOI: 10.1016/j.antiviral.2021.105080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Assembly of hepatitis B virus (HBV) capsids is driven by the hydrophobic interaction of core protein (Cp) at dimer-dimer interface. Binding of core protein allosteric modulators (CpAMs) to a hydrophobic "HAP" pocket formed between the inter-dimer interface strengths the dimer-dimer interaction and misdirects the assembly of Cp dimers into non-capsid Cp polymers or morphologically normal capsids devoid of viral pregenomic (pg) RNA and DNA polymerase. In this study, we performed a systematic mutagenesis analysis to identify Cp amino acid residues at Cp dimer-dimer interface that are critical for capsid assembly, pgRNA encapsidation and resistance to CpAMs. By analyzing 70 mutant Cp with a single amino acid substitution of 25 amino acid residues around the HAP pocket, our study revealed that residue W102 and Y132 are critical for capsid assembly. However, substitution of many other residues did not significantly alter the amount of capsids, but reduced the amount of encapsidated pgRNA, suggesting their critical roles in pgRNA packaging. Interestingly, several mutant Cp with a single amino acid substitution of residue P25, T33 or I105 supported high levels of DNA replication, but conferred strong resistance to multiple chemotypes of CpAMs. In addition, we also found that WT Cp, but not the assembly incompetent Cp, such as Y132A Cp, interacted with HBV DNA polymerase (Pol). This later finding implies that encapsidation of viral DNA polymerase may depend on the interaction of Pol with a capsid assembly intermediate, but not free Cp dimers. Taking together, our findings reported herein shed new light on the mechanism of HBV nucleocapsid assembly and mode of CpAM action.
Collapse
|
27
|
Senaweera S, Du H, Zhang H, Kirby KA, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Discovery of New Small Molecule Hits as Hepatitis B Virus Capsid Assembly Modulators: Structure and Pharmacophore-Based Approaches. Viruses 2021; 13:770. [PMID: 33925540 PMCID: PMC8146408 DOI: 10.3390/v13050770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CpAMs) have shown promise as potent anti-HBV agents in both preclinical and clinical studies. Herein, we report our efforts in identifying novel CpAM hits via a structure-based virtual screening against a small molecule protein-protein interaction (PPI) library, and pharmacophore-guided compound design and synthesis. Curated compounds were first assessed in a thermal shift assay (TSA), and the TSA hits were further evaluated in an antiviral assay. These efforts led to the discovery of two structurally distinct scaffolds, ZW-1841 and ZW-1847, as novel HBV CpAM hits, both inhibiting HBV in single-digit µM concentrations without cytotoxicity at 100 µM. In ADME assays, both hits displayed extraordinary plasma and microsomal stability. Molecular modeling suggests that these hits bind to the Cp dimer interfaces in a mode well aligned with known CpAMs.
Collapse
Affiliation(s)
- Sameera Senaweera
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Karen A. Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (J.X.)
| |
Collapse
|
28
|
Maepa MB, Bloom K, Ely A, Arbuthnot P. Hepatitis B virus: promising drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:451-466. [PMID: 33843412 DOI: 10.1080/14728222.2021.1915990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Wang Y, Wang Z, Liu J, Wang Y, Wu R, Sheng R, Hou T. Discovery of novel HBV capsid assembly modulators by structure-based virtual screening and bioassays. Bioorg Med Chem 2021; 36:116096. [PMID: 33721800 DOI: 10.1016/j.bmc.2021.116096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
HBV capsid assembly has been regarded as an attractive potential target for anti-HBV therapy. In this study, we discovery the Novel HBV capsid assembly modulators (CAMs) through structure-based virtual screening and bioassays. A total of 16 structurally diverse compounds were purchased and assayed, including three compounds with inhibition rate > 50% at 20 μM. Further lead optimization based on the most potent compound II-1-7 (EC50 = 5.6 ± 0.1 µM) were performed by using substructure searching strategy, resulting in compound II-2-9 with an EC50 value of 1.8 ± 0.6 μM. In bimolecular fluorescence complementation (BiFC) assay, compound II-2-9 inhibited the HBV by disrupting the HBV capsid interactions. In summary, this study provides a highly efficient way to discover novel CAMs, and 2-aryl-4-quinolyl amide derivatives could serve as the starting point for development of novel anti-HBV drugs.
Collapse
Affiliation(s)
- Yuan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jiacheng Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yunwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
30
|
Liu Y, Chang S, Hsieh D, Burdette D, Martin R, Mo H, Feierbach B. Generation of an HBV core phenotyping assay for evaluating HBV capsid compounds. J Virol Methods 2021; 292:114117. [PMID: 33657432 DOI: 10.1016/j.jviromet.2021.114117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/14/2021] [Accepted: 02/24/2021] [Indexed: 01/23/2023]
Abstract
Hepatitis B virus (HBV) capsids are assembled from HBV core protein and assembly is a critical step in the propagation of the virus. Due to its multiple functions in the viral life cycle, core is an attractive target for new antiviral therapies. For HBV capsid assembly modulators (CAMs), several resistance mutants have been identified, both from the clinic and in vitro. However, currently there is no convenient in vitro assay to monitor resistance to CAMs in the clinic. Here, we developed a facile, cassette-based phenotyping assay to assess the antiviral activity of CAMs on a panel of clinical isolates. Using this system, the core genes from 13 patients infected with HBV genotypes A-H were expressed as chimeric virus and tested for sensitivity to CAMs. No substantial differences in antiviral activity were observed across genotypes due to the conservation of the drug binding pocket. In addition, we tested a panel of constructs encoding 13 single amino acid polymorphs in the CAM binding site, including some polymorphs with previously-described resistance to CAMs. Overall, 11 of 13 constructs replicated in vitro, 6 constructs showed reduced susceptibility to CAMs. The 11 polymorphs which could replicate in vitro remained sensitive to the nucleotide analog tenofovir alafenamide (TAF), indicating that there is no cross-resistance.
Collapse
Affiliation(s)
- Yang Liu
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States.
| | - Silvia Chang
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| | - David Hsieh
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| | - Dara Burdette
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| | - Ross Martin
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| | - Hongmei Mo
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| | - Becket Feierbach
- Yang Liu Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA, 94404, United States
| |
Collapse
|
31
|
Lee YH, Cha HM, Hwang JY, Park SY, Vishakantegowda AG, Imran A, Lee JY, Yi YS, Jun S, Kim GH, Kang HJ, Chung SJ, Kim M, Kim H, Han SB. Sulfamoylbenzamide-based Capsid Assembly Modulators for Selective Inhibition of Hepatitis B Viral Replication. ACS Med Chem Lett 2021; 12:242-248. [PMID: 33603970 PMCID: PMC7883466 DOI: 10.1021/acsmedchemlett.0c00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
As the spread of infections caused by hepatitis B virus (HBV) threatens public health worldwide, investigations from multiple perspectives and of various mechanisms of action are urgently required to increase the HBV cure rate. Targeting the encapsidation of the nuclear capsid protein (core protein, HBc) has emerged as an attractive strategy for inhibiting the viral assembly process; however, a drug targeting this mechanism has not yet been approved. We synthesized novel sulfamoylbenzamides (SBAs) as capsid assembly modulators of HBV and found that the effects and safety profiles of compounds 3 and 8 have potential therapeutic applicability against HBV. The formation of tubular particles was time-dependent in the presence of 3, indicating a new mode of protein assembly by SBA compounds. Our findings provide a new entity for developing safe and efficient treatments for HBV infection.
Collapse
Affiliation(s)
- Yeon Hee Lee
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyeon-Min Cha
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic
of Korea
| | - Jun Yeon Hwang
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - So Yeong Park
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Avinash G. Vishakantegowda
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ali Imran
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoon-Sun Yi
- Center
for Research Equipment, Korea Basic Science
Institute, Cheongju 28119, Republic of Korea
| | - Sangmi Jun
- Center
for Research Equipment, Korea Basic Science
Institute, Cheongju 28119, Republic of Korea
| | - Ga Hyeon Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co.
Ltd. Suwon Venture Valley II, 142-10, Saneop-ro 156, Gwonseon-gu, Suwon 16648, Republic of Korea
| | - Hyo Jin Kang
- AbTis Co.
Ltd. Suwon Venture Valley II, 142-10, Saneop-ro 156, Gwonseon-gu, Suwon 16648, Republic of Korea
| | - Sang J. Chung
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co.
Ltd. Suwon Venture Valley II, 142-10, Saneop-ro 156, Gwonseon-gu, Suwon 16648, Republic of Korea
| | - Meehyein Kim
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic
of Korea
| | - Hyejin Kim
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics
& Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
32
|
Discovery and structure activity relationship of glyoxamide derivatives as anti-hepatitis B virus agents. Bioorg Med Chem 2021; 31:115952. [PMID: 33421915 PMCID: PMC7856252 DOI: 10.1016/j.bmc.2020.115952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Chronic hepatitis B viral infection is a significant health problem world-wide, and currently available antiviral agents suppress HBV infections, but rarely cure this disease. It is presumed that antiviral agents that target the viral nuclear reservoir of transcriptionally active cccDNA may eliminate HBV infection. Through a series of chemical optimization, we identified a new series of glyoxamide derivatives affecting HBV nucleocapsid formation and cccDNA maintenance at low nanomolar levels. Among all the compounds synthesized, GLP-26 displays a major effect on HBV DNA, HBeAg secretion and cccDNA amplification. In addition, GLP-26 shows a promising pre-clinical profile and long-term effect on viral loads in a humanized mouse model.
Collapse
|
33
|
Hwang N, Ban H, Chen J, Ma J, Liu H, Lam P, Kulp J, Menne S, Chang J, Guo JT, Du Y. Synthesis of 4-oxotetrahydropyrimidine-1(2H)-carboxamides derivatives as capsid assembly modulators of hepatitis B virus. Med Chem Res 2021; 30:459-472. [PMID: 33456291 PMCID: PMC7797712 DOI: 10.1007/s00044-020-02677-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
We report herein the synthesis and evaluation of phenyl ureas derived from 4-oxotetrahydropyrimidine as novel capsid assembly modulators of hepatitis B virus (HBV). Among the derivatives, compound 27 (58031) and several analogs showed an activity of submicromolar EC50 against HBV and low cytotoxicities (>50 μM). Structure–activity relationship studies revealed a tolerance for an additional group at position 5 of 4-oxotetrahydropyrimidine. The mechanism study indicates that compound 27 (58031) is a type II core protein allosteric modulator (CpAMs), which induces core protein dimers to assemble empty capsids with fast electrophoresis mobility in native agarose gel. These compounds may thus serve as leads for future developments of novel antivirals against HBV.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA.,Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127 Pudong New District China
| | - Junjun Chen
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Hui Liu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA.,Department of Pathogen Biology, Peking University Medical Center, Beijing, China
| | - Patrick Lam
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Stephan Menne
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC 20057 USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| |
Collapse
|
34
|
Ely A, Singh P, Smith TS, Arbuthnot P. In vitro transcribed mRNA for expression of designer nucleases: Advantages as a novel therapeutic for the management of chronic HBV infection. Adv Drug Deliv Rev 2021; 168:134-146. [PMID: 32485207 DOI: 10.1016/j.addr.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) remains a significant worldwide medical problem. While diseases caused by HIV infection, tuberculosis and malaria are on the decline, new cases of chronic hepatitis B are on the rise. Because often fatal complications of cirrhosis and hepatocellular carcinoma are associated with chronic hepatitis B, the need for a cure is as urgent as ever. Currently licensed therapeutics fail to eradicate the virus and this is attributable to persistence of the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Elimination or inactivation of the viral cccDNA is thus a goal of research aimed at hepatitis B cure. The ability to engineer nucleases that are capable of specific cleavage of a DNA sequence now provides the means to disable cccDNA permanently. The scientific literature is replete with many examples of using designer zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs) to inactivate HBV. However, important concerns about safety, dose control and efficient delivery need to be addressed before the technology is employed in a clinical setting. Use of in vitro transcribed mRNA to express therapeutic gene editors goes some way to overcoming these concerns. The labile nature of RNA limits off-target effects and enables dose control. Compatibility with hepatotropic non-viral vectors is convenient for the large scale preparation that will be required for advancing gene editing as a mode of curing chronic hepatitis B.
Collapse
|
35
|
D e novo synthesis of hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA. JHEP Rep 2020; 3:100195. [PMID: 33385130 PMCID: PMC7771110 DOI: 10.1016/j.jhepr.2020.100195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background & Aims Chronic HBV infection cannot be cured by current therapeutics owing to their limited ability to reduce covalently closed circular (ccc)DNA levels in the livers of infected individuals. Therefore, greater understanding of the molecular determinants of cccDNA formation and persistence is required. One key issue is the extent to which de novo nucleocapsid-mediated replenishment (reimport) contributes to cccDNA levels in an infected hepatocyte. Methods We engineered an infectious HBV mutant with a genome encoding a stop codon at position T67 in the HBV core open reading frame (ΔHBc HBV). Importantly, ΔHBc HBV virions cannot initiate nucleocapsid synthesis upon infection. Long-term in vitro HBV infection markers were followed for up for 9 weeks in HepG2-NTCP cells (A3 clone) and HBV DNA was quantified using a newly-developed, highly-precise PCR assay (cccDNA inversion quantitative PCR). Results ΔHBc and wild-type (WT) HBV resulted in comparable expression of HBV surface antigen (HBsAg), which could be blocked using the entry inhibitor Myrcludex B, confirming bona fide infection via the receptor sodium taurocholate cotransporting polypeptide (NTCP). In primary human hepatocytes, Huh7-NTCP, HepG2-NTCP, and HepaRG-NTCP cells, comparable copy numbers of cccDNA were formed. cccDNA levels, transcription of viral RNA, and HBsAg secretion remained comparably stable in WT and ΔHBc HBV-infected cells for at least 9 weeks. Conclusions Our results imply that de novo synthesised HBc plays a minor role in transcriptional regulation of cccDNA. Importantly, we show that initially-formed cccDNA is stable in hepatocytes without requiring continuous replenishment in in vitro infection systems and contribution from de novo DNA-containing nucleocapsids is not required. Thus, short-term therapeutic targeting of capsid-reimport is likely an inefficient strategy in eliminating cccDNA in chronically infected hepatocytes. Lay summary The hepatitis B virus can maintain itself in the liver for a patient's lifetime, causing liver injury and cancer. We have clarified exactly how it maintains itself in an infected cell. This now means we have a better idea at how to target the virus and cure a chronic infection. Covalently closed circular (ccc)DNA is key for maintaining chronic HBV infection. Virus core protein expression is not required for cccDNA formation, stability, or transcription within 9 weeks of in vitro infection. Our results suggest that targeting HBV core with short-term treatment is inefficient in clearing intrahepatic cccDNA. Viral entry inhibitors or capsid inhibitors could prevent breakthrough of novel HBV variants.
Collapse
Key Words
- ALT, alanine aminotransferase
- Antivirals
- Bulevirtide
- CIs, capsid inhibitors
- Capsid inhibitors
- Core protein
- Covalently closed circular DNA
- DHBV, duck hepatitis B virus
- HBV DNA integration
- HBV persistence
- HBV, hepatitis B virus
- HBcAg
- HBsAg, hepatitis B virus surface antigen
- Hepcludex
- Myrcludex B
- NC, naked capsids
- NTCP, sodium taurocholate cotransporting polypeptide
- NUCs, nucleos(t)ide analogues
- ORF, open reading frame
- PEG, polyethylene glycol
- PHH, primary human hepatocytes
- SN, supernatant
- VP, virions
- WT, wild-type
- cccDNA, covalently closed circular DNA
- dpi, days post inoculation
- mge, multiplicity of genomic equivalent
- pgRNA, pregenomic RNA
- rcDNA, relaxed circular DNA
- vge, viral genome equivalents
Collapse
|
36
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
37
|
Wei F, Kang D, Cherukupalli S, Zalloum WA, Zhang T, Liu X, Zhan P. Discovery and optimizing polycyclic pyridone compounds as anti-HBV agents. Expert Opin Ther Pat 2020; 30:715-721. [PMID: 32746660 DOI: 10.1080/13543776.2020.1801641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Hepatitis B disease is caused by the hepatitis B virus (HBV), which is a DNA virus that belongs to the Hepadnaviridae family. It is a considerable health burden, with 257 million active cases globally. Long-standing infection may create a fundamental cause of liver disease and chronic infections, including cirrhosis, hepatocellular, and carcinoma liver failure. There is an urgent need to develop novel, safe, and effective drug candidates with a novel mechanism of action, improved activity, efficacy, and cure rate. AREAS COVERED Herein, the authors provide a concise report focusing on a general and cutting-edge overview of the current state of polycyclic pyridone-related anti-HBV agent patents from 2016 to 2018 and some future perspectives. EXPERT OPINION In medicinal chemistry, high-throughput screening (HTS), hit-to-lead optimization (H2L), bioisosteric replacement, and scaffold hopping approaches are playing a major role in the discovery and development of HBV inhibitors. Developing polycyclic pyridone-related anti-HBV agents that could target host factors has attracted significant interest and attention in recent years.
Collapse
Affiliation(s)
- Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba , Amman, Jordan
| | - Tao Zhang
- Shandong Qidu Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs , Zibo, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| |
Collapse
|
38
|
van den Berg F, Limani SW, Mnyandu N, Maepa MB, Ely A, Arbuthnot P. Advances with RNAi-Based Therapy for Hepatitis B Virus Infection. Viruses 2020; 12:E851. [PMID: 32759756 PMCID: PMC7472220 DOI: 10.3390/v12080851] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with hepatitis B virus (HBV) remains a global health challenge. Approximately 292 million people worldwide are chronically infected with HBV and the annual mortality from the infection is approaching 900,000. Despite the availability of an effective prophylactic vaccine, millions of individuals are at risk of potentially fatal complicating cirrhosis and hepatocellular carcinoma. Current drug treatments can suppress viral replication, slow the progression of liver fibrosis, and reduce infectivity, but can rarely clear the viral covalently closed circular DNA (cccDNA) that is responsible for HBV persistence. Alternative therapeutic strategies, including those based on viral gene silencing by harnessing the RNA interference (RNAi) pathway, effectively suppress HBV replication and thus hold promise. RNAi-based silencing of certain viral genes may even lead to disabling of cccDNA during chronic infection. This review summarizes different RNAi activators that have been tested against HBV, the advances with vectors used to deliver artificial potentially therapeutic RNAi sequences to the liver, and the current status of preclinical and clinical investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.v.d.B.); (S.W.L.); (N.M.); (M.B.M.); (A.E.)
| |
Collapse
|
39
|
Chen W, Liu F, Zhao Q, Ma X, Lu D, Li H, Zeng Y, Tong X, Zeng L, Liu J, Yang L, Zuo J, Hu Y. Discovery of Phthalazinone Derivatives as Novel Hepatitis B Virus Capsid Inhibitors. J Med Chem 2020; 63:8134-8145. [PMID: 32692159 DOI: 10.1021/acs.jmedchem.0c00346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HBV capsid assembly has been viewed as an attractive target for new antiviral therapies against HBV. On the basis of a lead compound 4r, we further investigated this target to identify novel active compounds with appropriate anti-HBV potencies and improved pharmacokinetic (PK) properties. Structure-activity relationship studies based on metabolic pathways of 4r led to the identification of a phthalazinone derivative 19f with appropriate anti-HBV potencies (IC50 = 0.014 ± 0.004 μM in vitro), which demonstrated high oral bioavailability and liver exposure. In the AAV-HBV/mouse model, administration of 19f resulted in a 2.67 log reduction of the HBV DNA viral load during a 4-week treatment with 150 mg/kg dosing twice daily.
Collapse
Affiliation(s)
- Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qiliang Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinna Ma
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Limin Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Jia Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
40
|
Design, synthesis and anti-HBV activity of NVR3-778 derivatives. Bioorg Chem 2020; 94:103363. [DOI: 10.1016/j.bioorg.2019.103363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/06/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023]
|
41
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|