1
|
Rios LP, Freire CA. Acute metabolic responses of two marine brachyuran crabs to dilute seawater: The aerobic cost of hyper regulation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023. [DOI: 10.1002/jez.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/04/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
|
2
|
Transcriptomic Analysis in Marine Medaka Gill Reveals That the Hypo-Osmotic Stress Could Alter the Immune Response via the IL17 Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012417. [PMID: 36293271 PMCID: PMC9604416 DOI: 10.3390/ijms232012417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fish gills are the major osmoregulatory tissue that contact the external water environment and have developed an effective osmoregulatory mechanism to maintain cellular function. Marine medaka (Oryzias melastigma) has the ability to live in both seawater and fresh water environments. The present study performed a seawater (SW) to 50% seawater (SFW) transfer, and the gill samples were used for comparative transcriptomic analysis to study the alteration of hypo-osmotic stress on immune responsive genes in this model organism. The result identified 518 differentiated expressed genes (DEGs) after the SW to SFW transfer. Various pathways such as p53 signaling, forkhead box O signaling, and the cell cycle were enriched. Moreover, the immune system was highlighted as one of the top altered biological processes in the enrichment analysis. Various cytokines, chemokines, and inflammatory genes that participate in the IL-17 signaling pathway were suppressed after the SW to SFW transfer. On the other hand, some immunoglobulin-related genes were up-regulated. The results were further validated by real-time qPCR. Taken together, our study provides additional gill transcriptome information in marine medaka; it also supports the notion that osmotic stress could influence the immune responses in fish gills.
Collapse
|
3
|
Dal Pont G, Po B, Wang J, Wood CM. How the green crab Carcinus maenas copes physiologically with a range of salinities. J Comp Physiol B 2022; 192:683-699. [PMID: 36040508 DOI: 10.1007/s00360-022-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
To evaluate the physiological ability to adjust to environmental variations of salinity, Carcinus maenas were maintained in 10, 20, 32 (control), 40, and 50 ppt (13.8 ± 0.6 °C) for 7 days. Closed respirometry systems were used to evaluate oxygen consumption ([Formula: see text]), ammonia excretion (Jamm), urea-N excretion (Jurea-N) and diffusive water fluxes (with 3H2O). Ions, osmolality, metabolites, and acid-base status were determined in the hemolymph and seawater, and transepithelial potential (TEP) was measured. At the lowest salinity, there were marked increases in [Formula: see text] and Jamm, greater reliance on N-containing fuels to support aerobic metabolism, and a state of internal metabolic alkalosis (increased [HCO3-]) despite lower seawater pH. At higher salinities, an activation of anaerobic metabolism and a state of metabolic acidosis (decreased [HCO3-] and increased [lactate]), in combination with respiratory compensation (decreased PCO2), were detected. TEP became more negative with decreasing salinity. Osmoregulation and osmoconformation occurred at low and high salinities, respectively, with complex patterns in individual ions; hemolymph [Mg2+] was particularly well regulated at levels well below the external seawater at all salinities. Diffusive water flux rates increased at higher salinities. Our results show that C. maenas exhibits wide plasticity of physiological responses when acclimated to different salinities and tolerates substantial disturbances of physiological parameters, illustrating that this species is well adapted to invade and survive in diverse habitats.
Collapse
Affiliation(s)
- Giorgi Dal Pont
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada.,Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, 83035-050, Brazil
| | - Beverly Po
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - Jun Wang
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada.,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. .,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada.
| |
Collapse
|
4
|
Glover CN, Goss GG. Hypoxia modifies calcium handling in the Pacific hagfish, Eptatretus stoutii. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111042. [PMID: 34329740 DOI: 10.1016/j.cbpa.2021.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Hagfishes may encounter low dissolved oxygen in their natural habitats, a consequence of association with hypoxic sediments and their feeding behaviour. In teleost fish, hypoxia exposure decreases ion uptake, speculated to be a mechanism for energy conservation. Although hagfishes osmoconform, they do regulate extracellular fluid concentrations of divalent cations such as calcium. The current study hypothesised that exposure of hagfish to hypoxia (0.4 kPA, 24 h) would reduce calcium uptake (determined via in vitro isolated skin and gut epithelial transport assays) and calcium accumulation (determined by in vivo whole animal exposures, using radiolabelled calcium (45Ca) to assess newly acquired calcium). A decrease in in vitro epidermal uptake was observed at sub-environmental calcium levels (10 μM), but not at environmental calcium levels (10 mM). No changes in gut calcium uptake were determined. Conversely, hypoxia led to a more rapid in vivo accumulation of calcium in tissues (skin, muscle, liver, heart, plasma, brain), mediated mostly by a significant increase in accumulation at the gill. These differences were only apparent after 1-h of exposure to the radiolabel (i.e., the last hour of the 24-h hypoxia exposure) and were not observed after 3 and 24 h periods of radiolabel exposure. This outcome was the opposite of the hypothesised effect. The reasons for a more rapid accumulation of calcium in hypoxic hagfish are unknown but may relate to roles for calcium in enhancing hypoxia tolerance in hagfishes or could be a consequence of changes in ventilatory frequency.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Greg G Goss
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
6
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
7
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
8
|
Eom J, Wood CM. Understanding ventilation and oxygen uptake of Pacific hagfish (Eptatretus stoutii), with particular emphasis on responses to ammonia and interactions with other respiratory gases. J Comp Physiol B 2021; 191:255-271. [PMID: 33547930 DOI: 10.1007/s00360-020-01329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022]
Abstract
The hagfishes are an ancient and evolutionarily important group, with breathing mechanisms and gills very different from those of other fishes. Hagfish inhale through a single nostril via a velum pump, and exhale through multiple separate gill pouches. We assessed respiratory performance in E. stoutii (31 ppt, 12 ºC, 50-120 g) by measuring total ventilatory flow ([Formula: see text]) at the nostril, velar (respiratory) frequency (fr), and inspired (PIO2) and expired (PEO2) oxygen tensions at all 12 gill pouch exits plus the pharyngo-cutaneous duct (PCD) on the left side, and calculated ventilatory stroke volume (S[Formula: see text]), % O2 utilization, and oxygen consumption (ṀO2). At rest under normoxia, spontaneous changes in [Formula: see text] ranged from apnea to > 400 ml kg-1 min-1, due to variations in both fr and S[Formula: see text]; "normal" [Formula: see text] averaged 137 ml kg-1 min-1, ṀO2 was 718 µmol kg-1 h-1, so the ventilatory convection requirement for O2 was about 11 L mmol-1. Relative to anterior gill pouches, lower PEO2 values (i.e. higher utilization) occurred in the more posterior pouches and PCD. Overall, O2 utilization was 34% and did not change during hyperventilation but increased to > 90% during hypoventilation. Environmental hypoxia (PIO2 ~ 8% air saturation, 1.67 kPa, 13 Torr) caused hyperventilation, but neither acute hyperoxia (PIO2 ~ 275% air saturation, 57.6 kPa, 430 Torr) nor hypercapnia (PICO2 ~ 1% CO2, 1.0 kPa, 7.5 Torr) significantly altered [Formula: see text]. ṀO2 decreased in hypoxia and increased in hyperoxia but did not change in hypercapnia. Acute exposure to high environmental ammonia (HEA, 10 mM NH4HCO3) caused an acute decrease in [Formula: see text], in contrast to the hyperventilation of long-term HEA exposure described in a previous study. The hypoventilatory response to HEA still occurred during hypoxia and hyperoxia, but was blunted during hypercapnia. Under all treatments, ṀO2 increased with increases in [Formula: see text]. Overall, there were lower convection requirements for O2 during hyperoxia, higher requirements during hypoxia and hypercapnia, but unchanged requirements during HEA. We conclude that this "primitive" fish operates a flexible respiratory system with considerable reserve capacity.
Collapse
Affiliation(s)
- Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
9
|
Wood CM, Eom J. The osmorespiratory compromise in the fish gill. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110895. [PMID: 33429056 DOI: 10.1016/j.cbpa.2021.110895] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/17/2023]
Abstract
August Krogh made fundamental discoveries about both respiratory gas exchange and osmo/iono-regulation in fish gills. Dave Randall and co-workers identified a tradeoff between these two functions such that high functional surface area and low diffusion distance would favour O2 uptake (e.g. exercise, hypoxia), whereas low functional surface area and high diffusion distance would favour osmo/iono-regulation (rest, normoxia). Today we call this concept the "osmorespiratory compromise" and realize that it is much more complex than originally envisaged. There are at least 6 mechanisms by which fish can change functional branchial area and diffusion distance. Three involve reorganizing blood flow pathways: (i) flow redistribution within the secondary (respiratory) lamellae; (ii) flow shunting between "respiratory" and "ionoregulatory" pathways in the filament; (iii) opening up more distal lamellae on the filament and closing non-respiratory pathways. Three more involve "reversible gill remodeling": (iv) proliferation of the interlamellar gill cell mass (ILCM); (v) proliferation of ionocytes up the sides of the lamellae; (vi) covering over the apical exposure of ionocytes by extension of pavement cells. In ways that remain incompletely understood, these mechanisms allow dynamic regulation of the osmorespiratory compromise, such that ion and water fluxes can be decoupled from O2 uptake during continuous exercise. Furthermore, hypoxia-tolerant species can reduce branchial ion and water fluxes below normoxic levels despite hyperventilating during hypoxia. In marine fish, the osmorespiratory conflict is intensified by the greater ionic and osmotic gradients from seawater to blood, but underlying mechanisms remain poorly understood.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
10
|
Onukwufor JO, Wood CM. Osmorespiratory Compromise in Zebrafish (Danio rerio): Effects of Hypoxia and Acute Thermal Stress on Oxygen Consumption, Diffusive Water Flux, and Sodium Net Loss Rates. Zebrafish 2020; 17:400-411. [DOI: 10.1089/zeb.2020.1947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- John O. Onukwufor
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Somo DA, Onukwufor JO, Wood CM, Richards JG. Interactive effects of temperature and hypoxia on diffusive water flux and oxygen uptake rate in the tidepool sculpin, Oligocottus maculosus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110781. [PMID: 32763468 DOI: 10.1016/j.cbpa.2020.110781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
Abstract
The osmorespiratory compromise hypothesis posits that respiratory epithelial characteristics and physiological regulatory mechanisms which promote gas permeability also increase permeability to ions and water. The hypothesis therefore predicts that physiological responses which increase effective gas permeability will result in increased effective ion and water permeabilities. Though analyses of water and gas effective permeabilities using high temperature have generally supported the hypothesis, water permeability responses to hypoxia remain equivocal and the combination of high temperature and hypoxia untested. We measured diffusive water flux (DWF) and oxygen uptake rate (Ṁo2) in response to acute temperature change, hypoxia, and the combination of high temperature and hypoxia in a hypoxia-tolerant intertidal fish, the tidepool sculpin (Oligocottus maculosus). In support of the osmorespiratory compromise hypothesis, Ṁo2 and DWF increased with temperature. In contrast, DWF decreased with hypoxia at a constant temperature, a result consistent with previously observed decoupling of water and gas effective permeabilities during hypoxia exposure in some hypoxia tolerant fishes. However, DWF levels during simultaneous high temperature and hypoxia exposure were not different from fish exposed to high temperature in normoxia, possibly suggesting a failure of the mechanism responsible for down-regulating DWF in hypoxia. These results, together with time-course analysis of hypoxia exposure and normoxic recovery, suggest that tidepool sculpins actively downregulate effective water permeability in hypoxia but the mechanism fails with multi-stressor exposure. Future investigations of the mechanistic basis of the regulation of gill permeability will be key to understanding the role of this regulatory ability in the persistence of this species in the dynamic intertidal environment.
Collapse
Affiliation(s)
- Derek A Somo
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - John O Onukwufor
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|