1
|
Zhang S, Lu Y, Liu Y, Wang M, Xu S, Li Y, Wu H, Pei Q, Yang L, Lu L, Xiong Y, Liu Y, Chen S, Yao Q, Kang Q, Li Y, Chen D, Zhang X, Tang N, Li Z. Neglected function of gastrin to reduce feeding in Siberian sturgeon (Acipenser baerii) via cholecystokinin receptor B. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:941-954. [PMID: 38381278 DOI: 10.1007/s10695-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.
Collapse
Affiliation(s)
- Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Yongpei Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Sichuan Fisheries School, 18# Dujuan Road, Chengdu, Chengdu, Sichuan, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hongwei Wu
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Qaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Yuxi Agricultural Vocational-Technical College, 41# Xiangjiazhuang, Yuxi, Yunnan, China
| | - Lu Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yixiao Xiong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Yao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Kang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhang S, Lu Y, Liu Y, Kang Q, Yao Q, Li Y, Chen S, Liu Y, Du J, Xiong Y, Zhu W, Chen D, Zhang X, Tang N, Li Z. Identification of C1q/TNF-related protein 4 as a novel appetite-regulating peptide that reduces food intake in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2024; 289:111574. [PMID: 38191049 DOI: 10.1016/j.cbpa.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.
Collapse
Affiliation(s)
- Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Yongpei Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Kang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Yao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jiayi Du
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yixiao Xiong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Wenwen Zhu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Torres-Martínez A, Hattori RS, Fernandino JI, Somoza GM, Hung SD, Masuda Y, Yamamoto Y, Strüssmann CA. Temperature- and genotype-dependent stress response and activation of the hypothalamus-pituitary-interrenal axis during temperature-induced sex reversal in pejerrey Odontesthes bonariensis, a species with genotypic and environmental sex determination. Mol Cell Endocrinol 2024; 582:112114. [PMID: 38008372 DOI: 10.1016/j.mce.2023.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
In the pejerrey Odontesthes bonariensis (Atheriniformes, Atherinopsidae), exposure to high and low temperatures during the critical period of sex determination (CPSD) induce testicular and ovarian differentiation, respectively, regardless of the presence or not of the sex determining gene amhy, which is crucial for testis formation only at intermediate, sexually neutral temperatures. In this study we explored the existence of genotype-specific signaling of Crh (Corticotropin Releasing Hormone) family genes and their associated carrier protein, receptors, and other stress-related genes in response to temperature during the CPSD and the potential involvement of the central nervous system via the hypothalamus-pituitary-interrenal (HPI) axis in the sex determination of this species. The Crh family genes crhb, uts1, ucn3, the receptor crhr1 and the stress-related genes gr1, gr2, nr3c2 were transiently upregulated in the heads of pejerrey larvae during the CPSD by high temperature alone or in combination with other factors. Only crhr2 transcript abundance was not influenced by temperature but independently by time and genotype. In most cases, mRNA abundance was higher in the XX heads compared to that of XY individuals. The mRNAs of some of these genes were localized in the hypothalamus of pejerrey larvae during the CPSD. XX larvae also showed higher whole-body cortisol titers than the XY, downregulation of cyp19a1a and upregulation of the testis-related genes amhy/amha in trunks (gonads) and were 100% masculinized at the high temperature. In contrast, at the low temperature, crhbp and avt were upregulated in the heads, particularly the former in XY larvae. cyp19a1a and amhy/amha were up- and downregulated, respectively, in the gonads, and fish were 100% feminized. Signaling via the HPI axis was observed simultaneously with the first molecular signs of ongoing sex determination/differentiation in the gonads. Overall, the results strongly suggest a temperature-dependent, genotype-specific regulatory action of the brain involving the Crh family of stress-related genes on the process of environmental sex determination of pejerrey.
Collapse
Affiliation(s)
- Aarón Torres-Martínez
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ricardo Shohei Hattori
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130, Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - Gustavo Manuel Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130, Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - Song Dong Hung
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuki Masuda
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoji Yamamoto
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Carlos Augusto Strüssmann
- Department of Marine Biosciences. Graduate School of Marine Science and Technology. Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
4
|
Wang M, Xu S, Li Y, Tang N, Chen H, Zhang S, Liu Y, Wang J, Chen D, Zhang X, Li Z. Identification, tissue distribution, and anorexigenic effect of amylin in Siberian sturgeon (Acipenser baeri). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111079. [PMID: 34534676 DOI: 10.1016/j.cbpa.2021.111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Amylin is a 37-amino acid polypeptide that has been found to be involved in feeding regulation in some mammals, birds, and goldfish. We cloned amylin of Siberian sturgeon and detected its distribution pattern in 15 tissues. The expression levels in the periprandial period (pre-and post-feeding), the changes in the food intake, and the expression levels of related appetite factors after the intraperitoneal injection of amylin were detected. The expression of amylin was found to be the highest in the hypothalamus. Compared with 1 h pre-feeding, the expression levels of amylin in the hypothalamus and duodenum were increased significantly 1 h post-feeding. Compared with the control group (saline), intraperitoneal injection of 50 ng/g, 100 ng/g, and 200 ng/g of amylin significantly inhibited food intake at 1 h post injection, but not at 3 h and 6 h. The injection of 50 ng/g, 100 ng/g, and 200 ng/g amylin significantly inhibited the cumulative feed. After 1 h of 50 ng/g amylin injection, the levels of MC4R and somatostatin in the hypothalamus increased significantly, while the levels of amylin and NPY decreased significantly. The levels of CCK in the valvular intestine were increased significantly. Insulin in the duodenum was also increased significantly, but there was no significant change in ghrelin in the duodenum. These results show that amylin inhibits feeding in Siberian sturgeon by down-regulating the appetite-stimulating factor NPY and up-regulating the appetite-suppressing factors somatostatin, MC4R, CCK, and insulin. This study provides a theoretical basis for studying the feeding function and action mechanisms of amylin in Siberian sturgeon.
Collapse
Affiliation(s)
- Mei Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Shaoqi Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
5
|
Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021; 529:2596-2619. [DOI: 10.1002/cne.25113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Department of Biology Stanford University Stanford California USA
| | - Christy R. Wayne
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
6
|
Tang WZ, Cui ZJ. Permanent Photodynamic Activation of the Cholecystokinin 2 Receptor. Biomolecules 2020; 10:biom10020236. [PMID: 32033232 PMCID: PMC7072308 DOI: 10.3390/biom10020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cholecystokinin 2 receptor (CCK2R) is expressed in the central nervous system and peripheral tissues, playing an important role in higher nervous and gastrointestinal functions, pain sensation, and cancer growth. CCK2R is reversibly activated by cholecystokinin or gastrin, but whether it can be activated permanently is not known. In this work, we found that CCK2R expressed ectopically in CHO-K1 cells was permanently activated in the dark by sulfonated aluminum phthalocyanine (SALPC / AlPcS4, 10-1,000 nM), as monitored by Fura-2 fluorescent calcium imaging. Permanent CCK2R activation was also observed with AlPcS2, but not PcS4. CCK2R previously exposed to SALPC (3 and 10 nM) was sensitized by subsequent light irradiation (> 580 nm, 31.5 mW·cm-2). After the genetically encoded protein photosensitizer mini singlet oxygen generator (miniSOG) was fused to the N-terminus of CCK2R and expressed in CHO-K1 cells, light irradiation (450 nm, 85 mW·cm-2) activated in-frame CCK2R (miniSOG-CCK2R), permanently triggering persistent calcium oscillations blocked by the CCK2R antagonist YM 022 (30 nM). From these data, it is concluded that SALPC is a long-lasting CCK2R agonist in the dark, and CCK2R is photogenetically activated permanently with miniSOG as photosensitizer. These properties of SALPC and CCK2R could be used to study CCK2R physiology and possibly for pain and cancer therapies.
Collapse
|
7
|
Zhang X, Liu Y, Qi J, Tian Z, Tang N, Chen D, Li Z. Progress in understanding the roles of Urocortin3 (UCN3) in the control of appetite from studies using animal models. Peptides 2019; 121:170124. [PMID: 31415798 DOI: 10.1016/j.peptides.2019.170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Urocortin3 (UCN3), the newest member of corticotrophin releasing hormone (CRH) family polypeptides, is an anorexic factor discovered in 2001, which has a strong inhibitory effect on animal appetite regulation. UCN3 is widely distributed in various tissues of animals and has many biological functions. Based on the research progress of UCN3 on mammals and non-mammals, this paper summarized the discovery, tissue distribution, appetite regulation and mechanism of UCN3 in animals, in order to provide a reference for feeding regulation and growth in mammals and fish in further research and production.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|