1
|
Fehsenfeld S, Yoon GR, Quijada-Rodriguez AR, Kandachi-Toujas H, Calosi P, Breton S, Weihrauch D. Short-term exposure to high pCO 2 leads to decreased branchial cytochrome C oxidase activity in the presence of octopamine in a decapod. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111603. [PMID: 38346534 DOI: 10.1016/j.cbpa.2024.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| | - Haluka Kandachi-Toujas
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Watson WH, Gutzler BC, Goldstein JS, Jury SH. Impacts of Increasing Temperature on the Metabolism of Confined and Freely Moving American Lobsters ( Homarus americanus). THE BIOLOGICAL BULLETIN 2023; 245:103-116. [PMID: 38980328 DOI: 10.1086/730687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractGulf of Maine waters are warming rapidly, prompting a reevaluation of how commercially important marine species will respond. The goal of this study was to determine the respiratory, cardiac, and locomotory responses of American lobsters (Homarus americanus) to increasing water temperatures and to compare these to similar published studies. First, we measured the heart rate and ventilation rate of 10 lobsters that were confined in a temperature-controlled chamber while exposing them to gradually warming temperatures from 16 to 30 °C over 7 h. Both heart rate and ventilation rate increased along with the temperature up to a break point, with the mean heart rate peaking at 26.5 ± 1.6 °C, while the ventilation rate peaked at 27.4 ± 0.8 °C. In a subset of these trials (n = 5), oxygen consumption was also monitored and peaked at similar temperatures. In a second experiment, both the heart rate and activity of five lobsters were monitored with custom-built dataloggers while they moved freely in a large tank, while the temperature was increased from 18 to 29 °C over 24 h. The heart rate of these lobsters also increased with temperature, but their initial heart rates were lower than we recorded from confined lobsters. Finally, we confirmed that the low heart rates of the freely moving lobsters were due to the methods used by comparing heart rate data from eight lobsters collected using both methods with each individual animal. Thus, while our overall results are consistent with data from previous studies, they also show that the methods used in studies of physiological and behavioral responses to warming temperatures can impact the results obtained.
Collapse
|
3
|
Allen GJP, Sachs M, Nash MT, Quijada-Rodriguez AR, Klymasz-Swartz A, Weihrauch D. Identification of different physiological functions within the gills and epipodites of the American lobster: Differences in metabolism, transbranchial transport, and mRNA expression. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111344. [PMID: 36379379 DOI: 10.1016/j.cbpa.2022.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.
Collapse
Affiliation(s)
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mikyla Tara Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - Aaron Klymasz-Swartz
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
4
|
Tripp A, Allen GJP, Quijada-Rodriguez AR, Yoon GR, Weihrauch D. Effects of single and dual-stressor elevation of environmental temperature and P CO2 on metabolism and acid-base regulation in the Louisiana red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111151. [PMID: 35026389 DOI: 10.1016/j.cbpa.2022.111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Elevation of temperature and CO2 levels within the world's aquatic environments is expected to cause numerous physiological challenges to their inhabitants. While effects on marine ecosystems have been well studied, freshwater ecosystems have rarely been examined using a dual-stressor approach leaving our understanding of its inhabitants upon these challenges unclear. We aimed to identify the affects of elevated temperature and hypercapnia in isolation and in combination on the metabolic and acid-base regulatory processes of a freshwater crayfish, Procambarus clarkii. Crayfish were exposed to freshwater conditions that may be prevalent by the year 2100 and metabolic responses were determined after 14-days of exposure. In addition, changes in branchial mRNA expression of acid-base linked transporters were investigated. Interactions between exposure conditions influenced extracellular pH as well as the nitrogen physiology and routine metabolic rate of the crayfish. Crayfish exposed to individual and combined elevations in temperature and/or hypercapnia maintained an extracellular pH similar to that of control crayfish. Dual-stressor exposed crayfish seem to elevate the importance of ammonium as an excretable acid-equivalent based on an overall increase in the branchial mRNA expression of transporters related to ammonia excretion including the Na+/K+-ATPase, Rhesus-protein, and the V-type H+-ATPase. Overall, hypercapnia and dual-stressor conditions caused a metabolic depression that may have long-lasting consequences such as limited locomotion, growth, and reproduction. Future generations of crayfish given the chance to adapt over several generations may ameliorate these consequences.
Collapse
Affiliation(s)
- Ashley Tripp
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Garett J P Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | | | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
5
|
Li X, Li S, Shi G, Xiong G, Shi L, Kang J, Su J, Ding A, Li X, Qiao Y, Liao L, Wang L, Wu W. Quantitative proteomics insights into gel properties changes of myofibrillar protein from Procambarus clarkii under cold stress. Food Chem 2022; 372:130935. [PMID: 34818725 DOI: 10.1016/j.foodchem.2021.130935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023]
Abstract
The impacts of cold stress (4 ℃ for 0 h, 12 h, 24 h, 36 h and 48 h, respectively) on the components, structural and physical properties of myofibrillar protein (MP) gel from Procambarus clarkii were investigated. The physicochemical analysis indicated the secondary and tertiary structure of MP were unfolding to different degrees after cold stress when compared to the control. The MP gel hardness reached a maximum when the cold stress reached 24 h. Furthermore, the quantitative proteomics results indicated that 20 up-regulated differentially abundant proteins (DAPs) were detected in 24 h when compared to control, specifically include myosin light chain 1 (MLC1) and skeletal muscle actin 6. Additionally, the combined analysis confirmed that MLC1 and skeletal muscle actin 6 might play key roles in hardening shrimp meat under cold stress. The results could provide a theoretical reference for the changes in crayfish muscle quality during cold chain transportation.
Collapse
Affiliation(s)
- Xuehong Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Shugang Li
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; Engineering Research Center of Bio-process, Ministry of Education/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Gangpeng Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Jun Kang
- Hubei Qianwang Ecological Crayfish Industrial Park Group Corporation, Qianjiang 433100, China
| | - Jing Su
- Hubei Qianwang Ecological Crayfish Industrial Park Group Corporation, Qianjiang 433100, China
| | - Anzi Ding
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Xin Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Yu Qiao
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Li Liao
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China.
| | - Wenjin Wu
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China.
| |
Collapse
|
6
|
Metabolic plasticity improves lobster's resilience to ocean warming but not to climate-driven novel species interactions. Sci Rep 2022; 12:4412. [PMID: 35292683 PMCID: PMC8924167 DOI: 10.1038/s41598-022-08208-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters—inhabiting a global warming and species re-distribution hotspot—align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average—(14.0 °C), current summer—(17.5 °C) and projected future summer—(21.5 °C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.
Collapse
|
7
|
Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. SCIENCE ADVANCES 2021; 7:7/26/eabe8290. [PMID: 34162536 PMCID: PMC8221624 DOI: 10.1126/sciadv.abe8290] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/07/2021] [Indexed: 05/30/2023]
Abstract
The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.
Collapse
Affiliation(s)
| | - Aleksey V Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrey Ptitsyn
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Prarthana Khanna
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia
| | - Peter Williams
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - David R Walt
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
8
|
Maus B, Gutsfeld S, Bock C, Pörtner HO. Non-invasive MRI Studies of Ventilatory and Cardiovascular Performance in Edible Crabs Cancer pagurus During Warming Under Elevated CO 2 Levels. Front Physiol 2021; 11:596529. [PMID: 33505316 PMCID: PMC7831881 DOI: 10.3389/fphys.2020.596529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
The thermal tolerance of marine decapod crustacea is defined through their capacities for oxygen uptake and distribution. High ambient CO2 levels were previously shown to reduce hemolymph oxygen levels at enhanced cardiac performance during warming. This study investigated the impacts of warming under two CO2 levels on ventilation and hemolymph circulation in edible crabs Cancer pagurus. It also highlights changes in the ventilatory and cardiac pauses displayed by Decapoda under routine metabolism. Animals were exposed to step-wise, sub-critical warming (12–20°C over 5 days) under control (470 μatm) and high (1,350 μatm) water PCO2. Flow-through respirometry was combined with magnetic resonance imaging and infra-red photoplethysmography to allow for simultaneous, non-invasive measurements of metabolic rates (M˙O2), ventilation and cardiovascular performance. Crabs spent significantly more time in a low M˙O2 state (metabolic pause), when experiencing high CO2 conditions above 16°C, compared to normocapnic warming. Heart rates leveled off beyond 18°C at any CO2 level. Cardiac output continued to increase with high-CO2-warming, due to elevated cardiac stroke volumes. Consequently, temperature-dependent branchial hemolymph flow remained unaffected by CO2. Instead, a suppressing effect of CO2 on ventilation was found beyond 16°C. These results indicate constrained oxygen uptake at stable cardiovascular performance in a decapod crustacean. Cancer pagurus: urn:lsid:zoobank.org:act:B750F89A-84B5-448B-8D80-EBD724A1C9D4
Collapse
Affiliation(s)
- Bastian Maus
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sebastian Gutsfeld
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
9
|
Stein W, Harzsch S. The Neurobiology of Ocean Change - insights from decapod crustaceans. ZOOLOGY 2021; 144:125887. [PMID: 33445148 DOI: 10.1016/j.zool.2020.125887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
The unprecedented rate of carbon dioxide accumulation in the atmosphere has led to increased warming, acidification and oxygen depletion in the world's oceans, with projected impacts also on ocean salinity. In this perspective article, we highlight potential impacts of these factors on neuronal responses in decapod crustaceans. Decapod crustaceans comprise more than 8,800 marine species which have colonized a wide range of habitats that are particularly affected by global ocean change, including estuarine, intertidal, and coastal areas. Many decapod species have large economic value and high ecological importance because of their global invasive potential and impact on local ecosystems. Global warming has already led to considerable changes in decapod species' behavior and habitat range. Relatively little is known about how the decapod nervous system, which is the ultimate driver of all behaviors, copes with environmental stressors. We use select examples to summarize current findings and evaluate the impact of current and expected environmental changes. While data indicate a surprising robustness against stressors like temperature and pH, we find that only a handful of species have been studied and long-term effects on neuronal activity remain mostly unknown. A further conclusion is that the combined effects of multiple stressors are understudied. We call for greater research efforts towards long-term effects on neuronal physiology and expansion of cross-species comparisons to address these issues.
Collapse
Affiliation(s)
- Wolfgang Stein
- Illinois State University, School of Biological Sciences, Normal, IL 61790, USA.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, D-17498 Greifswald, Germany.
| |
Collapse
|
10
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
11
|
Warren DE, Hedrick MS. Introduction to the special issue: The state of acid-base physiology in a changing world. Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110630. [PMID: 31812673 DOI: 10.1016/j.cbpa.2019.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daniel E Warren
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Michael S Hedrick
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| |
Collapse
|