1
|
Jangid P, Chaudhury S. Transition Path Dynamics of Non-Markovian Systems across a Rough Potential Barrier. J Phys Chem A 2024; 128:10041-10052. [PMID: 39528308 DOI: 10.1021/acs.jpca.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2024]
Abstract
Transition paths refer to rare events in physics, chemistry, and biology where the molecules cross barriers separating stable molecular conformations. The conventional analysis of the transition path times employs a diffusive and memoryless transition over a smooth potential barrier. However, it is widely acknowledged that the free energy profile between two minima in biomolecular processes is inherently not smooth. In this article, we discuss a theoretical model with a parabolic rough potential barrier and obtain analytical results of the transition path distribution and mean transition path times by incorporating absorbing boundary conditions across the boundaries under the driving of Gaussian white noise. Further, the influence of anomalous dynamics in rough potential driven by a power-law memory kernel is analyzed by deriving a time-dependent scaled diffusion coefficient that coarse-grains the effects of roughness, and the system's dynamics is reduced to a scaled diffusion on a smooth potential. Our theoretical results are tested and validated against numerical simulations. The findings of our study show the influence of the boundary conditions, barrier height, barrier roughness, and memory effect on the transition path time distributions in a rough potential, and the validity of the scaling diffusion coefficient has been discussed.
Collapse
Affiliation(s)
- Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Berezhkovskii AM, Makarov DE. The significance of fuzzy boundaries of the barrier regions in single-molecule measurements of failed barrier crossing attempts. J Chem Phys 2024; 161:101101. [PMID: 39248382 PMCID: PMC11387013 DOI: 10.1063/5.0227497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
A recent ground-breaking experimental study [Lyons et al., Phys. Rev. X 14(1), 011017 (2024)] reports on measuring the temporal duration and the spatial extent of failed attempts to cross an activation barrier (i.e., "loops") for a folding transition in a single molecule and for a Brownian particle trapped within a bistable potential. Within the model of diffusive dynamics, however, both of these quantities are, on average, exactly zero because of the recrossings of the barrier region boundary. That is, an observer endowed with infinite spatial and temporal resolution would find that finite loops do not exist (or, more precisely, form a set of measure zero). Here we develop a description of the experiment that takes the "fuzziness" of the boundaries caused by finite experimental resolution into account and show how the experimental uncertainty of localizing the point, in time and space, where the barrier is crossed leads to observable distributions of loop times and sizes. Although these distributions generally depend on the experimental resolution, this dependence, in certain cases, may amount to a simple resolution-dependent factor and, therefore, the experiments do probe inherent properties of barrier crossing dynamics.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20819, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Blom K, Song K, Vouga E, Godec A, Makarov DE. Milestoning estimators of dissipation in systems observed at a coarse resolution. Proc Natl Acad Sci U S A 2024; 121:e2318333121. [PMID: 38625949 PMCID: PMC11047069 DOI: 10.1073/pnas.2318333121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such "lumped" observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may-via a process called milestoning-improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations "closer to underlying microscopic dynamics" and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded.
Collapse
Affiliation(s)
- Kristian Blom
- Mathematical biophysics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, TX78712
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, TX78712
| | - Aljaž Godec
- Mathematical biophysics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Dmitrii E. Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Yang S, Song C. Switching Go̅ -Martini for Investigating Protein Conformational Transitions and Associated Protein-Lipid Interactions. J Chem Theory Comput 2024; 20:2618-2629. [PMID: 38447049 PMCID: PMC10976636 DOI: 10.1021/acs.jctc.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Proteins are dynamic biomolecules that can transform between different conformational states when exerting physiological functions, which is difficult to simulate using all-atom methods. Coarse-grained (CG) Go̅-like models are widely used to investigate large-scale conformational transitions, which usually adopt implicit solvent models and therefore cannot explicitly capture the interaction between proteins and surrounding molecules, such as water and lipid molecules. Here, we present a new method, named Switching Go̅-Martini, to simulate large-scale protein conformational transitions between different states, based on the switching Go̅ method and the CG Martini 3 force field. The method is straightforward and efficient, as demonstrated by the benchmarking applications for multiple protein systems, including glutamine binding protein (GlnBP), adenylate kinase (AdK), and β2-adrenergic receptor (β2AR). Moreover, by employing the Switching Go̅-Martini method, we can not only unveil the conformational transition from the E2Pi-PL state to E1 state of the type 4 P-type ATPase (P4-ATPase) flippase ATP8A1-CDC50 but also provide insights into the intricate details of lipid transport.
Collapse
Affiliation(s)
- Song Yang
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Song
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Ji X, Wang N, Wang J, Wang T, Huang X, Hao H. Non-destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes. Chem Sci 2024; 15:3800-3830. [PMID: 38487216 PMCID: PMC10935763 DOI: 10.1039/d3sc06527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.
Collapse
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| |
Collapse
|
6
|
Grabenhorst L, Sturzenegger F, Hasler M, Schuler B, Tinnefeld P. Single-Molecule FRET at 10 MHz Count Rates. J Am Chem Soc 2024; 146:3539-3544. [PMID: 38266173 DOI: 10.1021/jacs.3c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2024]
Abstract
A bottleneck in many studies utilizing single-molecule Förster resonance energy transfer is the attainable photon count rate, as it determines the temporal resolution of the experiment. As many biologically relevant processes occur on time scales that are hardly accessible with currently achievable photon count rates, there has been considerable effort to find strategies to increase the stability and brightness of fluorescent dyes. Here, we use DNA nanoantennas to drastically increase the achievable photon count rates and observe fast biomolecular dynamics in the small volume between two plasmonic nanoparticles. As a proof of concept, we observe the coupled folding and binding of two intrinsically disordered proteins, which form transient encounter complexes with lifetimes on the order of 100 μs. To test the limits of our approach, we also investigated the hybridization of a short single-stranded DNA to its complementary counterpart, revealing a transition path time of 17 μs at photon count rates of around 10 MHz, which is an order-of-magnitude improvement compared to the state of the art. Concomitantly, the photostability was increased, enabling many seconds long megahertz fluorescence time traces. Due to the modular nature of the DNA origami method, this platform can be adapted to a broad range of biomolecules, providing a promising approach to study previously unobservable ultrafast biophysical processes.
Collapse
Affiliation(s)
- Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Moa Hasler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
7
|
Devi A, Neupane K, Jung H, Neuman KC, Woodside MT. Nonlinear effects in optical trapping of titanium dioxide and diamond nanoparticles. Biophys J 2023; 122:3439-3446. [PMID: 37496270 PMCID: PMC10502464 DOI: 10.1016/j.bpj.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.
Collapse
Affiliation(s)
- Anita Devi
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Haksung Jung
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Chong SH, Ham S. Evolutionary conservation of amino acids contributing to the protein folding transition state. J Comput Chem 2023; 44:1002-1009. [PMID: 36571461 DOI: 10.1002/jcc.27060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022]
Abstract
The question of whether amino acids critical to protein folding kinetics are evolutionarily conserved has been investigated intensively in the past, but no consensus has yet been reached. Recently, we have demonstrated that the transition state, dictating folding kinetics, is characterized as the state of maximum dynamic cooperativity, i.e., the state of maximum correlations between amino acid contact formations. Here, we investigate the evolutionary conservation of those amino acids contributing significantly to the dynamic cooperativity. We find a strong indication of a new kind of relationship-necessary but not sufficient causality-between the evolutionary conservation and the dynamic cooperativity: larger contributions to the dynamic cooperativity arise from more conserved residues, but not vice versa. This holds for all the protein systems for which long folding simulation trajectories are available. To our knowledge, this is the first systematic demonstration of any kind of evolutionary conservation of amino acids relevant to folding kinetics.
Collapse
Affiliation(s)
- Song-Ho Chong
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
9
|
Song K, Makarov DE, Vouga E. The effect of time resolution on the observed first passage times in diffusive dynamics. J Chem Phys 2023; 158:111101. [PMID: 36948823 DOI: 10.1063/5.0142166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/17/2023] Open
Abstract
Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory xt is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Godec A, Makarov DE. Challenges in Inferring the Directionality of Active Molecular Processes from Single-Molecule Fluorescence Resonance Energy Transfer Trajectories. J Phys Chem Lett 2023; 14:49-56. [PMID: 36566432 DOI: 10.1021/acs.jpclett.2c03244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
We discuss some of the practical challenges that one faces in using stochastic thermodynamics to infer directionality of molecular machines from experimental single-molecule trajectories. Because of the limited spatiotemporal resolution of single-molecule experiments and because both forward and backward transitions between the same pairs of states cannot always be detected, differentiating between the forward and backward directions of, e.g., an ATP-consuming molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple extension of a Markov-state model that is commonly employed to analyze single-molecule transition-path measurements, we illustrate how irreversibility can be hidden from such measurements but in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule trajectories are considered.
Collapse
Affiliation(s)
- Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | | |
Collapse
|
11
|
Singh A, Rief M, Žoldák G. Direct observation of chemo-mechanical coupling in DnaK by single-molecule force experiments. Biophys J 2022; 121:4729-4739. [PMID: 36196054 PMCID: PMC9748191 DOI: 10.1016/j.bpj.2022.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
Protein allostery requires a communication channel for functional regulation between distal sites within a protein. In the molecular chaperone Hsp70, a two-domain enzyme, the ATP/ADP status of an N-terminal nucleotide-binding domain regulates the substrate affinity of a C-terminal substrate-binding domain. Recently available three-dimensional structures of Hsp70 in ATP/ADP states have provided deep insights into molecular pathways of allosteric signals. However, direct mechanical probing of long-range allosteric coupling between the ATP hydrolysis step and domain states is missing. Using laser optical tweezers, we examined the mechanical properties of a truncated two-domain DnaK(1-552ye) in apo/ADP/ATP- and peptide-bound states. We find that in the apo and ADP states, DnaK domains are mechanically stable and rigid. However, in the ATP state, substrate-binding domain (SBD)∗ye is mechanically destabilized as the result of interdomain docking followed by the unfolding of the α-helical lid. By observing the folding state of the SBD, we could observe the continuous ATP/ADP cycling of the enzyme in real time with a single molecule. The SBD lid closure is strictly coupled to the chemical steps of the ATP hydrolysis cycle even in the presence of peptide substrate.
Collapse
Affiliation(s)
- Anubhuti Singh
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Garching, Germany
| | - Matthias Rief
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Garching, Germany.
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Cassovia New Industry Cluster (CNIC), Trieda SNP 1, 040 11, Košice, Slovakia.
| |
Collapse
|
12
|
Rief M, Žoldák G. Single-molecule mechanical studies of chaperones and their clients. BIOPHYSICS REVIEWS 2022; 3:041301. [PMID: 38505517 PMCID: PMC10903372 DOI: 10.1063/5.0098033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 03/21/2024]
Abstract
Single-molecule force spectroscopy provides access to the mechanics of biomolecules. Recently, magnetic and laser optical tweezers were applied in the studies of chaperones and their interaction with protein clients. Various aspects of the chaperone-client interactions can be revealed based on the mechanical probing strategies. First, when a chaperone is probed under load, one can examine the inner workings of the chaperone while it interacts with and works on the client protein. Second, when protein clients are probed under load, the action of chaperones on folding clients can be studied in great detail. Such client folding studies have given direct access to observing actions of chaperones in real-time, like foldase, unfoldase, and holdase activity. In this review, we introduce the various single molecule mechanical techniques and summarize recent single molecule mechanical studies on heat shock proteins, chaperone-mediated folding on the ribosome, SNARE folding, and studies of chaperones involved in the folding of membrane proteins. An outlook on significant future developments is given.
Collapse
Affiliation(s)
- Matthias Rief
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Ernst-Otto-Fischer-Str., 8, D-85748 Garching, Germany
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
13
|
Makarov DE, Berezhkovskii A, Haran G, Pollak E. The Effect of Time Resolution on Apparent Transition Path Times Observed in Single-Molecule Studies of Biomolecules. J Phys Chem B 2022; 126:7966-7974. [PMID: 36194758 PMCID: PMC9574923 DOI: 10.1021/acs.jpcb.2c05550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Single-molecule experiments have now achieved a time resolution allowing observation of transition paths, the brief trajectory segments where the molecule undergoing an unfolding or folding transition enters the energetically or entropically unfavorable barrier region from the folded/unfolded side and exits to the unfolded/folded side, thereby completing the transition. This resolution, however, is yet insufficient to identify the precise entrance/exit events that mark the beginning and the end of a transition path: the nature of the diffusive dynamics is such that a molecular trajectory will recross the boundary between the barrier region and the folded/unfolded state, multiple times, at a time scale much shorter than that of the typical experimental resolution. Here we use theory and Brownian dynamics simulations to show that, as a result of such recrossings, the apparent transition path times are generally longer than the true ones. We quantify this effect using a simple model where the observed dynamics is a moving average of the true dynamics and discuss experimental implications of our results.
Collapse
Affiliation(s)
- Dmitrii E. Makarov
- Depatment
of Chemistry and Oden Institute for Computational Engineering and
Sciences, University of Texas at Austin, Austin, Texas78712, United States
| | - Alexander Berezhkovskii
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Eli Pollak
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
14
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
15
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Observing the base-by-base search for native structure along transition paths during the folding of single nucleic acid hairpins. Proc Natl Acad Sci U S A 2021; 118:2101006118. [PMID: 34853166 DOI: 10.1073/pnas.2101006118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
Biomolecular folding involves searching among myriad possibilities for the native conformation, but the elementary steps expected from theory for this search have never been detected directly. We probed the dynamics of folding at high resolution using optical tweezers, measuring individual trajectories as nucleic acid hairpins passed through the high-energy transition states that dominate kinetics and define folding mechanisms. We observed brief but ubiquitous pauses in the transition states, with a dwell time distribution that matched microscopic theories of folding quantitatively. The sequence dependence suggested that pauses were dominated by microbarriers from nonnative conformations during the search by each nucleotide residue for the native base-pairing conformation. Furthermore, the pauses were position dependent, revealing subtle local variations in energy-landscape roughness and allowing the diffusion coefficient describing the microscopic dynamics within the barrier to be found without reconstructing the shape of the energy landscape. These results show how high-resolution measurements can elucidate key microscopic events during folding to test fundamental theories of folding.
Collapse
|
17
|
Liu Y, Tian F, Shi S, Deng Y, Zheng P. Enzymatic Protein-Protein Conjugation through Internal Site Verified at the Single-Molecule Level. J Phys Chem Lett 2021; 12:10914-10919. [PMID: 34734720 DOI: 10.1021/acs.jpclett.1c02767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Enzymes are widely used for protein ligation because of their efficient and site-specific connections under mild conditions. However, many enzymatic ligations are restricted to connections between protein termini while protein-protein conjugation at a specific internal site is limited. Previous work has found that Sortase A (SrtA) conjugates small molecules/peptides to a pilin protein at an internal lysine site via an isopeptide bond. Herein, we apply this noncanonical ligation property of SrtA for protein-protein conjugation at a designed YPKH site. Both a small protein domain, I27, and a large protein, GFP, were ligated at the designed internal site. Moreover, besides characterization by classic methods at the ensemble level, the specific ligation site at the interior YPKH motif is unambiguously verified by atomic force microscopy-based single-molecule force spectroscopy, showing the characteristic unfolding signature at the single-molecule level. Finally, steered molecular dynamics simulations also agreed with the results.
Collapse
Affiliation(s)
- Yutong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
18
|
Singh D, Mondal K, Chaudhury S. Effect of Memory and Inertial Contribution on Transition-Time Distributions: Theory and Simulations. J Phys Chem B 2021; 125:4536-4545. [PMID: 33900087 DOI: 10.1021/acs.jpcb.1c00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
Transition paths refer to the time taken by molecules to cross a barrier separating two molecular conformations. In this work, we study how memory, as well as inertial contribution in the dynamics along a reaction coordinate, can affect the distribution of the transition-path time. We use a simple model of dynamics governed by a generalized Langevin equation with a power-law memory along with the inertial term, which was neglected in previous studies, where memory effects were explored only in the overdamped limit. We derive an approximate expression for the transit-time distribution and discuss our results for the short- and long-time limits and also compare it with known results in the high friction (overdamped) limit as well as in the Markovian limit. We have developed a numerical algorithm to test our theoretical results against extensive numerical simulations.
Collapse
Affiliation(s)
- Divya Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Kinjal Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
19
|
Berezhkovskii AM, Bezrukov SM, Makarov DE. Localized potential well vs binding site: Mapping solute dynamics in a membrane channel onto one-dimensional description. J Chem Phys 2021; 154:111101. [PMID: 33752368 DOI: 10.1063/5.0044044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
In the one-dimensional description, the interaction of a solute molecule with the channel wall is characterized by the potential of mean force U(x), where the x-coordinate is measured along the channel axis. When the molecule can reversibly bind to certain amino acid(s) of the protein forming the channel, this results in a localized well in the potential U(x). Alternatively, this binding can be modeled by introducing a discrete localized site, in addition to the continuum of states along x. Although both models may predict identical equilibrium distributions of the coordinate x, there is a fundamental difference between the two: in the first model, the molecule passing through the channel unavoidably visits the potential well, while in the latter, it may traverse the channel without being trapped at the discrete site. Here, we show that when the two models are parameterized to have the same thermodynamic properties, they automatically yield identical translocation probabilities and mean translocation times, yet they predict qualitatively different shapes of the translocation time distribution. Specifically, the potential well model yields a narrower distribution than the model with a discrete site, a difference that can be quantified by the distribution's coefficient of variation. This coefficient turns out to be always smaller than unity in the potential well model, whereas it may exceed unity when a discrete trapping site is present. Analysis of the translocation time distribution beyond its mean thus offers a way to differentiate between distinct translocation mechanisms.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
20
|
Abstract
Chemists visualize chemical reactions as motion along one-dimensional "reaction coordinates" over free energy barriers. Various rate theories, such as transition state theory and the Kramers theory of diffusive barrier crossing, differ in their assumptions regarding the mathematical specifics of this motion. Direct experimental observation of the motion along reaction coordinates requires single-molecule experiments performed with unprecedented time resolution. Toward this goal, recent single-molecule studies achieved time resolution sufficient to catch biomolecules in the act of crossing free energy barriers as they fold, bind to their targets, or undergo other large structural changes, offering a window into the elusive reaction "mechanisms". This Perspective describes what we can learn (and what we have already learned) about barrier crossing dynamics through synergy of single-molecule experiments, theory, and molecular simulations. In particular, I will discuss how emerging experimental data can be used to answer several questions of principle. For example, is motion along the reaction coordinate diffusive, is there conformational memory, and is reduction to just one degree of freedom to represent the reaction mechanism justified? It turns out that these questions can be formulated as experimentally testable mathematical inequalities, and their application to experimental and simulated data has already led to a number of insights. I will also discuss open issues and current challenges in this fast evolving field of research.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes. Proc Natl Acad Sci U S A 2020; 117:27116-27123. [PMID: 33087575 DOI: 10.1073/pnas.2008307117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Recent single-molecule experiments have observed transition paths, i.e., brief events where molecules (particularly biomolecules) are caught in the act of surmounting activation barriers. Such measurements offer unprecedented mechanistic insights into the dynamics of biomolecular folding and binding, molecular machines, and biological membrane channels. A key challenge to these studies is to infer the complex details of the multidimensional energy landscape traversed by the transition paths from inherently low-dimensional experimental signals. A common minimalist model attempting to do so is that of one-dimensional diffusion along a reaction coordinate, yet its validity has been called into question. Here, we show that the distribution of the transition path time, which is a common experimental observable, can be used to differentiate between the dynamics described by models of one-dimensional diffusion from the dynamics in which multidimensionality is essential. Specifically, we prove that the coefficient of variation obtained from this distribution cannot possibly exceed 1 for any one-dimensional diffusive model, no matter how rugged its underlying free energy landscape is: In other words, this distribution cannot be broader than the single-exponential one. Thus, a coefficient of variation exceeding 1 is a fingerprint of multidimensional dynamics. Analysis of transition paths in atomistic simulations of proteins shows that this coefficient often exceeds 1, signifying essential multidimensionality of those systems.
Collapse
|
22
|
Lehmann K, Shayegan M, Blab GA, Forde NR. Optical Tweezers Approaches for Probing Multiscale Protein Mechanics and Assembly. Front Mol Biosci 2020; 7:577314. [PMID: 33134316 PMCID: PMC7573139 DOI: 10.3389/fmolb.2020.577314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Multi-step assembly of individual protein building blocks is key to the formation of essential higher-order structures inside and outside of cells. Optical tweezers is a technique well suited to investigate the mechanics and dynamics of these structures at a variety of size scales. In this mini-review, we highlight experiments that have used optical tweezers to investigate protein assembly and mechanics, with a focus on the extracellular matrix protein collagen. These examples demonstrate how optical tweezers can be used to study mechanics across length scales, ranging from the single-molecule level to fibrils to protein networks. We discuss challenges in experimental design and interpretation, opportunities for integration with other experimental modalities, and applications of optical tweezers to current questions in protein mechanics and assembly.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Marjan Shayegan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Gerhard A Blab
- Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development and Disease (C2D2), Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Zijlstra N, Nettels D, Satija R, Makarov DE, Schuler B. Transition Path Dynamics of a Dielectric Particle in a Bistable Optical Trap. PHYSICAL REVIEW LETTERS 2020; 125:146001. [PMID: 33064519 DOI: 10.1103/physrevlett.125.146001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/02/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Many processes in chemistry, physics, and biology involve rare events in which the system escapes from a metastable state by surmounting an activation barrier. Examples range from chemical reactions, protein folding, and nucleation events to the catastrophic failure of bridges. A challenge in understanding the underlying mechanisms is that the most interesting information is contained within the rare transition paths, the exceedingly short periods when the barrier is crossed. To establish a model process that enables access to all relevant timescales, although highly disparate, we probe the dynamics of single dielectric particles in a bistable optical trap in solution. Precise localization by high-speed tracking enables us to resolve the transition paths and relate them to the detailed properties of the 3D potential within which the particle diffuses. By varying the barrier height and shape, the experiments provide a stringent benchmark of current theories of transition path dynamics.
Collapse
Affiliation(s)
- Niels Zijlstra
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Rohit Satija
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
24
|
Kim JY, Chung HS. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 2020; 368:1253-1257. [PMID: 32527832 DOI: 10.1126/science.aba3854] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2019] [Accepted: 04/10/2020] [Indexed: 01/06/2023]
Abstract
Transition paths of macromolecular conformational changes such as protein folding are predicted to be heterogeneous. However, experimental characterization of the diversity of transition paths is extremely challenging because it requires measuring more than one distance during individual transitions. In this work, we used fast three-color single-molecule Förster resonance energy transfer spectroscopy to obtain the distribution of binding transition paths of a disordered protein. About half of the transitions follow a path involving strong non-native electrostatic interactions, resulting in a transition time of 300 to 800 microseconds. The remaining half follow more diverse paths characterized by weaker electrostatic interactions and more than 10 times shorter transition path times. The chain flexibility and non-native interactions make diverse binding pathways possible, allowing disordered proteins to bind faster than folded proteins.
Collapse
Affiliation(s)
- Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Berezhkovskii AM, Makarov DE. Detailed balance for diffusion in a potential with trapping and forward-backward symmetry of trapping time distributions. J Chem Phys 2020; 152:226101. [PMID: 32534527 PMCID: PMC7307648 DOI: 10.1063/1.5142566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
For particles diffusing in a potential, detailed balance guarantees the absence of net
fluxes at equilibrium. Here, we show that the conventional detailed balance condition is a
special case of a more general relation that works when the diffusion occurs in the
presence of a distributed sink that eventually traps the particle. We use this relation to
study the lifetime distribution of particles that start and are trapped at specified
initial and final points. It turns out that when the sink strength at the initial point is
nonzero, the initial and final points are interchangeable, i.e., the distribution is
independent of which of the two points is initial and which is final. In other words, this
conditional trapping time distribution possesses forward–backward symmetry.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Shin J, Berezhkovskii AM, Kolomeisky AB. Biased Random Walk in Crowded Environment: Breaking Uphill/Downhill Symmetry of Transition Times. J Phys Chem Lett 2020; 11:4530-4535. [PMID: 32433884 DOI: 10.1021/acs.jpclett.0c01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Various natural processes can be analyzed using the concept of random walks. For a single random walker, the mean waiting times for uphill and downhill transitions between neighboring sites are equal. Here we investigate the uphill/downhill symmetry of waiting times for transitions of a tracer in crowded environment using exactly solvable one-dimensional stochastic models. It is found that, unexpectedly, the time to move in the direction of the bias (downhill) is always longer than the time to move against the bias (uphill). The degree of asymmetry depends on the particle density, the strength of the bias, and the size of the system. The microscopic origin of the symmetry breaking is discussed.
Collapse
Affiliation(s)
- Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Mandal SS. Force Spectroscopy on Single Molecules of Life. ACS OMEGA 2020; 5:11271-11278. [PMID: 32478214 PMCID: PMC7254507 DOI: 10.1021/acsomega.0c00814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 05/02/2023]
Abstract
Biomolecules such as nucleic acids and proteins constitute the cells and its organelles that form the crucial components in all living organisms. They are associated with a variety of cellular processes during which they undergo conformational orientations. The structural rearrangements resulting from protein-protein, protein-DNA, and protein-drug interactions vary in spatial and temporal length scales. Force is one of the important key factors which regulate these interactions. The magnitude of the force can vary from sub-piconewtons to several thousands of piconewtons. Single-molecule force spectroscopy acts as a powerful tool which is capable of investigating mechanical stability and conformational rearrangements arising in biomolecules due to the above interactions. Real-time observation of conformational dynamics including access to rare or transient states and the estimation of mean dwell times using these tools aids in the kinetic analysis of these interactions. In this review, we highlight the capabilities of common force spectroscopy techniques such as optical tweezers, magnetic tweezers, and atomic force microscopy with case studies on emerging applications.
Collapse
Affiliation(s)
- Soumit S Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
28
|
Thorneywork AL, Gladrow J, Qing Y, Rico-Pasto M, Ritort F, Bayley H, Kolomeisky AB, Keyser UF. Direct detection of molecular intermediates from first-passage times. SCIENCE ADVANCES 2020; 6:eaaz4642. [PMID: 32494675 PMCID: PMC7195145 DOI: 10.1126/sciadv.aaz4642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 05/05/2023]
Abstract
All natural phenomena are governed by energy landscapes. However, the direct measurement of this fundamental quantity remains challenging, particularly in complex systems involving intermediate states. Here, we uncover key details of the energy landscapes that underpin a range of experimental systems through quantitative analysis of first-passage time distributions. By combined study of colloidal dynamics in confinement, transport through a biological pore, and the folding kinetics of DNA hairpins, we demonstrate conclusively how a short-time, power-law regime of the first-passage time distribution reflects the number of intermediate states associated with each of these processes, despite their differing length scales, time scales, and interactions. We thereby establish a powerful method for investigating the underlying mechanisms of complex molecular processes.
Collapse
Affiliation(s)
- Alice L. Thorneywork
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Corresponding author.
| | - Jannes Gladrow
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Marc Rico-Pasto
- Department de Fisica de la Materia Condensada, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| | - Felix Ritort
- Department de Fisica de la Materia Condensada, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
- CIBER BNN, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Anatoly B. Kolomeisky
- Department of Chemistry and Department of Chemical and Biomolecular Engineering Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
29
|
Satija R, Das A, Mühle S, Enderlein J, Makarov DE. Kinetics of Loop Closure in Disordered Proteins: Theory vs Simulations vs Experiments. J Phys Chem B 2020; 124:3482-3493. [PMID: 32264681 DOI: 10.1021/acs.jpcb.0c01437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
We study intrachain dynamics of intrinsically disordered proteins, as manifested by the time scales of loop formation, using atomistic simulations, experiment-parametrized coarse-grained models, and one-dimensional theories assuming Markov or non-Markov dynamics along the reaction coordinate. Despite the generally non-Markov character of monomer dynamics in polymers, we find that the simplest model of one-dimensional diffusion along the reaction coordinate (equated to the distance between the loop-forming monomers) well captures the mean first passage times to loop closure measured in coarse-grained and atomistic simulations, which, in turn, agree with the experimental values. This justifies use of the one-dimensional diffusion model in interpretation of experimental data. At the same time, the transition path times for loop closure in longer polypeptide chains show significant non-Markov effects; at intermediate times, these effects are better captured by the generalized Langevin equation model. At long times, however, atomistic simulations predict long tails in the distributions of transition path times, which are at odds with both the one-dimensional diffusion model and the generalized Langevin equation model.
Collapse
Affiliation(s)
- Rohit Satija
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Atanu Das
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Steffen Mühle
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, Göttingen, Germany
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
30
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. Peculiarities of the Mean Transition Path Time Dependence on the Barrier Height in Entropy Potentials. J Phys Chem B 2020; 124:2305-2310. [DOI: 10.1021/acs.jpcb.9b09595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander M. Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Leonardo Dagdug
- Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Berezhkovskii AM, Makarov DE. From Nonequilibrium Single-Molecule Trajectories to Underlying Dynamics. J Phys Chem Lett 2020; 11:1682-1688. [PMID: 32017851 DOI: 10.1021/acs.jpclett.9b03705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Single-molecule observations of biomolecular dynamics and folding are commonly rationalized using the model of diffusive dynamics on a free-energy landscape, which is inferred via the Boltzmann inversion of the equilibrium distribution of the experimental observable. Can the same model be applied to high-resolution single-molecule trajectories of molecular machines that lack thermal equilibrium so that the Boltzmann inversion method is inapplicable? In this Letter, we discuss two approaches to reconstructing the underlying free-energy landscape in such nonequilibrium systems and explore the performance of this model in application to trajectories with complex underlying dynamics.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
32
|
Abstract
Biomolecular conformational transitions are usually modeled as barrier crossings in a free energy landscape. The transition paths connect two local free energy minima and transition path times (TPT) are the actual durations of the crossing events. The simplest model employed to analyze TPT and to fit empirical data is that of a stochastic particle crossing a parabolic barrier. Motivated by some disagreement between the value of the barrier height obtained from the TPT distributions as compared to the value obtained from kinetic and thermodynamic analyses, we investigate here TPT for barriers which deviate from the symmetric parabolic shape. We introduce a continuous set of potentials, that starting from a parabolic shape, can be made increasingly asymmetric by tuning a single parameter. The TPT distributions obtained in the asymmetric case are very well-fitted by distributions generated by parabolic barriers. The fits, however, provide values for the barrier heights and diffusion coefficients which deviate from the original input values. We show how these findings can be understood from the analysis of the eigenvalues spectrum of the Fokker-Planck equation and highlight connections with experimental results.
Collapse
Affiliation(s)
- Michele Caraglio
- KU Leuven, Soft Matter and Biophysics Unit, Celestijnenlaan 200D, B-3001 Leuven, Belgium. and Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Takahiro Sakaue
- Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics Unit, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
| |
Collapse
|
33
|
Ozmaian M, Makarov DE. Transition path dynamics in the binding of intrinsically disordered proteins: A simulation study. J Chem Phys 2019; 151:235101. [PMID: 31864244 DOI: 10.1063/1.5129150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Association of proteins and other biopolymers is a ubiquitous process in living systems. Recent single-molecule measurements probe the dynamics of association in unprecedented detail by measuring the properties of association transition paths, i.e., short segments of molecular trajectories between the time the proteins are close enough to interact and the formation of the final complex. Interpretation of such measurements requires adequate models for describing the dynamics of experimental observables. In an effort to develop such models, here we report a simulation study of the association dynamics of two oppositely charged, disordered polymers. We mimic experimental measurements by monitoring intermonomer distances, which we treat as "experimental reaction coordinates." While the dynamics of the distance between the centers of mass of the molecules is found to be memoryless and diffusive, the dynamics of the experimental reaction coordinates displays significant memory and can be described by a generalized Langevin equation with a memory kernel. We compute the most commonly measured property of transition paths, the distribution of the transition path time, and show that, despite the non-Markovianity of the underlying dynamics, it is well approximated as one-dimensional diffusion in the potential of mean force provided that an apparent value of the diffusion coefficient is used. This apparent value is intermediate between the slow (low frequency) and fast (high frequency) limits of the memory kernel. We have further studied how the mean transition path time depends on the ionic strength and found only weak dependence despite strong electrostatic attraction between the polymers.
Collapse
Affiliation(s)
- Masoumeh Ozmaian
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|