1
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
2
|
Xu M, Sun Q, Wang X, Gao H, Liu Z. Near-Infrared Absorbing BODIPY-Xanthene Hybrids for Multiplexed Photoacoustic Imaging. Org Lett 2024; 26:3750-3755. [PMID: 38667340 DOI: 10.1021/acs.orglett.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We report a series of ethenylene-bridged D-π-A BODIPY-xanthene hybrid dyes with precisely regulated absorption bands ranging from the far-red to the near-infrared region (NIR, 700-1000 nm) through rational molecular design. These dyes have excellent photoacoustic properties, and their biocompatibility can be significantly improved by facilely introducing water-soluble groups. In vivo two-channel multiplexed photoacoustic imaging demonstrated their high-resolution imaging capabilities, making them promising candidates for future NIR bioimaging applications.
Collapse
Affiliation(s)
- Mohan Xu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qian Sun
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hu Gao
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhipeng Liu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
3
|
Jiang Z, Zhang C, Sun Q, Wang X, Chen Y, He W, Guo Z, Liu Z. A NIR-II Photoacoustic Probe for High Spatial Quantitative Imaging of Tumor Nitric Oxide in Vivo. Angew Chem Int Ed Engl 2024; 63:e202320072. [PMID: 38466238 DOI: 10.1002/anie.202320072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Nitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes. Herein, we designed a photoacoustic probe with an absorption maximum beyond 1000 nm for high spatial quantitative imaging of in vivo tumor NO dynamics. The probe exhibits remarkable sensitivity, selective ratiometric response behavior, and good tumor-targeting abilities, facilitating ratiometric imaging of tumor NO throughout tumor progression in a micron-resolution level. Using the probe as the imaging agent, we successfully quantified NO dynamics in tumor, liver and kidney. We have pinpointed an essential concentration threshold of around 80 nmol/cm3 for NO, which plays a crucial role in the "double-edged-sword" function of NO in tumors. Furthermore, we revealed a reciprocal relationship between the NO concentration in tumors and that in the liver, providing initial insights into the possible NO-mediated communication between tumor and the liver. We believe that the probe will help resolve conflicting aspects of NO biology and guide the design of imaging agents for tumor diagnosis and anti-cancer drug screening.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Qian Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
4
|
Yin R, Brøndsted F, Li L, McAfee JL, Fang Y, Sykes JS, He Y, Grant S, He J, Stains CI. Azaphosphinate Dyes: A Low Molecular Weight Near-Infrared Scaffold for Development of Photoacoustic or Fluorescence Imaging Probes. Chemistry 2024; 30:e202303331. [PMID: 38206848 PMCID: PMC10957303 DOI: 10.1002/chem.202303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Near-infrared (NIR) dyes are desirable for biological imaging applications including photoacoustic (PA) and fluorescence imaging. Nonetheless, current NIR dyes are often plagued by relatively large molecular weights, poor water solubility, and limited photostability. Herein, we provide the first examples of azaphosphinate dyes which display desirable properties such as low molecular weight, absorption/emission above 750 nm, and remarkable water solubility. In PA imaging, an azaphosphinate dye exhibited a 4.1-fold enhancement in intensity compared to commonly used standards, the ability to multiplex with existing dyes in whole blood, imaging depths of 2.75 cm in a tissue model, and contrast in mice. An improved derivative for fluorescence imaging displayed a >10-fold reduction in photobleaching in water compared to the FDA-approved indocyanine green dye and could be visualized in mice. This new dye class provides a robust scaffold for the development of photoacoustic or NIR fluorescence imaging agents.
Collapse
Affiliation(s)
- Ruwen Yin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Julia L McAfee
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Joshua S Sykes
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Yuchen He
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiang He
- Department of Radioalogy and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug, Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Brøndsted F, Fang Y, Li L, Zhou X, Grant S, Stains CI. Single Atom Stabilization of Phosphinate Ester-Containing Rhodamines Yields Cell Permeable Probes for Turn-On Photoacoustic Imaging. Chemistry 2024; 30:e202303038. [PMID: 37852935 PMCID: PMC10926271 DOI: 10.1002/chem.202303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, 68588, Lincoln, NE, USA
- Current Address: Department of Chemistry, University of California, 94720, Berkeley, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
6
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Rathnamalala CSL, Hernandez S, Lucero MY, Swartchick CB, Kalam Shaik A, Hammer NI, East AK, Gwaltney SR, Chan J, Scott CN. Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window. Angew Chem Int Ed Engl 2023; 62:e202214855. [PMID: 36722146 PMCID: PMC10088865 DOI: 10.1002/anie.202214855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Collapse
Affiliation(s)
| | - Selena Hernandez
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | | | | | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762, USA
| |
Collapse
|
8
|
Cui Y, Wang X, Jiang Z, Zhang C, Liang Z, Chen Y, Liu Z, Guo Z. A Photoacoustic Probe with Blood-Brain Barrier Crossing Ability for Imaging Oxidative Stress Dynamics in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202214505. [PMID: 36597890 DOI: 10.1002/anie.202214505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Spatiotemporal assessment of the oxidative stress dynamics in the brain is crucial for understanding the molecular mechanism underlying neurodegenerative diseases. However, existing oxidative stress probes have poor blood-brain barrier permeability or poor penetration depth, making them unsuitable for brain imaging. Herein, we developed a photoacoustic probe that enables real-time imaging of oxidative stress dynamics in the mouse brain. The probe not only responds to oxidative stress in a reversible and ratiometric manner, but it can also cross the blood-brain barrier of the mouse brain. Notably, the probe displayed excellent photoacoustic imaging of oxidative stress dynamics in the brains of Parkinson's disease mouse models. In addition, we investigated the antioxidant properties of natural polyphenols in the brain of a Parkinson's disease mouse model using the probe as an imaging agent and suggested the potential of the probe for screening anti-oxidative stress agents.
Collapse
Affiliation(s)
- Yijing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| |
Collapse
|
9
|
Yadav AK, Zhao Z, Weng Y, Gardner SH, Brady CJ, Pichardo Peguero OD, Chan J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J Am Chem Soc 2023; 145:1460-1469. [PMID: 36603103 PMCID: PMC10120059 DOI: 10.1021/jacs.2c12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yourong Weng
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catharine J Brady
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Oliver D Pichardo Peguero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Tian F, Li F, Ren L, Wang Q, Jiang C, Zhang Y, Li M, Song X, Zhang S. Acoustic-Based Theranostic Probes Activated by Tumor Microenvironment for Accurate Tumor Diagnosis and Assisted Tumor Therapy. ACS Sens 2022; 7:3611-3633. [PMID: 36455009 DOI: 10.1021/acssensors.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acoustic-based imaging techniques, including ultrasonography and photoacoustic imaging, are powerful noninvasive approaches for tumor imaging owing to sound transmission facilitation, deep tissue penetration, and high spatiotemporal resolution. Usually, imaging modes were classified into "always-on" mode and "activatable" mode. Conventional "always-on" acoustic-based probes often have difficulty distinguishing lesion regions of interest from surrounding healthy tissues due to poor target-to-background signal ratios. As compared, activatable probes have attracted attention with improved sensitivity, which can boost or amplify imaging signals only in response to specific biomolecular recognition or interactions. The tumor microenvironment (TME) exhibits abnormal physiological conditions that can be used to identify tumor sections from normal tissues. Various types of organic dyes and biomaterials can react with TME, leading to obvious changes in their optical properties. The TME also affects the self-assembly or aggregation state of nanoparticles, which can be used to design activatable imaging probes. Moreover, acoustic-based imaging probes and therapeutic agents can be coencapsulated into one nanocarrier to develop nanotheranostic probes, achieving tumor imaging and cooperative therapy. Satisfactorily, ultrasound waves not only accelerate the release of encapsulated therapeutic agents but also activate therapeutic agents to exert or enhance their therapeutic performance. Meanwhile, various photoacoustic probes can convert photon energy into heat under irradiation, achieving photoacoustic imaging and cooperative photothermal therapy. In this review, we focus on the recently developed TME-triggered ultrasound and photoacoustic theranostic probes for precise tumor imaging and targeted tumor therapy.
Collapse
Affiliation(s)
- Feng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Fengyan Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Linlin Ren
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Chengfang Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Yuqi Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Mengmeng Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| |
Collapse
|
11
|
Alchera E, Monieri M, Maturi M, Locatelli I, Locatelli E, Tortorella S, Sacchi A, Corti A, Nebuloni M, Lucianò R, Pederzoli F, Montorsi F, Salonia A, Meyer S, Jose J, Giustetto P, Franchini MC, Curnis F, Alfano M. Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods. PHOTOACOUSTICS 2022; 28:100400. [PMID: 36386292 PMCID: PMC9649962 DOI: 10.1016/j.pacs.2022.100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Detection and removal of bladder cancer lesions at an early stage is crucial for preventing tumor relapse and progression. This study aimed to develop a new technological platform for the visualization of small and flat urothelial lesions of high-grade bladder carcinoma in situ (CIS). We found that the integrin α5β1, overexpressed in bladder cancer cell lines, murine orthotopic bladder cancer and human bladder CIS, can be exploited as a receptor for targeted delivery of GNRs functionalized with the cyclic CphgisoDGRG peptide (Iso4). The GNRs@Chit-Iso4 was stable in urine and selectively recognized α5β1 positive neoplastic urothelium, while low frequency ultrasound-assisted shaking of intravesically instilled GNRs@Chit-Iso4 allowed the distribution of nanoparticles across the entire volume of the bladder. Photoacoustic imaging of GNRs@Chit-Iso4 bound to tumor cells allowed for the detection of neoplastic lesions smaller than 0.5 mm that were undetectable by ultrasound imaging and bioluminescence.
Collapse
Affiliation(s)
- Elisa Alchera
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Monieri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Irene Locatelli
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Manuela Nebuloni
- Pathology Unit, Department of Biomedical and Clinical Sciences, L. Sacco Hospital, Università degli Studi di Milano, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Filippo Pederzoli
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Sandra Meyer
- FUJIFILM Visualsonics Inc., Amsterdam, the Netherlands
| | - Jithin Jose
- FUJIFILM Visualsonics Inc., Amsterdam, the Netherlands
| | | | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Alfano
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Yadav AK, Lee MC, Lucero MY, Su S, Reinhardt CJ, Chan J. Activity-Based NIR Bioluminescence Probe Enables Discovery of Diet-Induced Modulation of the Tumor Microenvironment via Nitric Oxide. ACS CENTRAL SCIENCE 2022; 8:461-472. [PMID: 35505872 PMCID: PMC9052803 DOI: 10.1021/acscentsci.1c00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO's contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO's impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed in vivo, and fewer yet are practical in cancer models where the NO concentration is <200 nM. To overcome this outstanding challenge, we have developed BL660-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL660-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated two dietary studies which examine the impact of fat intake on NO and the TME. BL660-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet, which became obese with larger tumors, compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of inducible nitric oxide synthase which in turn can drive tumor progression.
Collapse
|
13
|
Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. Int J Pharm 2021; 613:121412. [PMID: 34942327 DOI: 10.1016/j.ijpharm.2021.121412] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/05/2023]
Abstract
Ultrasound is one of the safest and most advanced medical imaging technologies that is widely used in clinical practice. Ultrasound microbubbles, traditionally used for contrast-enhanced imaging, are increasingly applied in Ultrasound-targeted Microbubble Destruction (UTMD) technology which enhances tissue and cell membrane permeability through cavitation and sonoporation, to result in a promising therapeutic gene/drug delivery strategy. Here, we review recent developments in the application of UTMD-mediated gene and drug delivery in the diagnosis and treatment of tumors, including the concept, mechanism of action, clinical application status, and advantages of UTMD. Furthermore, the future perspectives that should be paid more attention to in this field are prospected.
Collapse
|
14
|
Gardner SH, Brady CJ, Keeton C, Yadav AK, Mallojjala SC, Lucero MY, Su S, Yu Z, Hirschi JS, Mirica LM, Chan J. A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing*. Angew Chem Int Ed Engl 2021; 60:18860-18866. [PMID: 34089556 PMCID: PMC8550804 DOI: 10.1002/anie.202105905] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Most photoacoustic (PA) imaging agents are based on the repurposing of existing fluorescent dye platforms that exhibit non-optimal properties for PA applications. Herein, we introduce PA-HD, a new dye scaffold optimized for PA probe development that features a 4.8-fold increase in sensitivity and a red-shift of the λabs from 690 nm to 745 nm to enable ratiometric imaging. Computational modeling was used to elucidate the origin of these enhanced properties. To demonstrate the generalizability of our remodeling efforts, we developed three probes for β-galactosidase activity (PA-HD-Gal), nitroreductase activity (PA-HD-NTR), and H2 O2 (PA-HD-H2 O2 ). We generated two cancer models to evaluate PA-HD-Gal and PA-HD-NTR. We employed a murine model of Alzheimer's disease to test PA-HD-H2 O2 . There, we observed a PA signal increase at 735 nm of 1.79±0.20-fold relative to background, indicating the presence of oxidative stress. These results were confirmed via ratiometric calibration, which was not possible using the parent HD platform.
Collapse
Affiliation(s)
- Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catharine J Brady
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Cameron Keeton
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Anuj K Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | | | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Zhengxin Yu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, NY, 13902, USA
| | - Liviu M Mirica
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| | - Jefferson Chan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, I, L, 61801, USA
| |
Collapse
|
15
|
Gardner SH, Brady CJ, Keeton C, Yadav AK, Mallojjala SC, Lucero MY, Su S, Yu Z, Hirschi JS, Mirica LM, Chan J. A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah H. Gardner
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Catharine J. Brady
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Cameron Keeton
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Anuj K. Yadav
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | | | - Melissa Y. Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Zhengxin Yu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | | | - Liviu M. Mirica
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| | - Jefferson Chan
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, I L 61801 USA
| |
Collapse
|
16
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Lucero MY, East AK, Reinhardt CJ, Sedgwick AC, Su S, Lee MC, Chan J. Development of NIR-II Photoacoustic Probes Tailored for Deep-Tissue Sensing of Nitric Oxide. J Am Chem Soc 2021; 143:7196-7202. [PMID: 33905646 PMCID: PMC8274393 DOI: 10.1021/jacs.1c03004] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a reliable in vivo technique for diverse biomedical applications ranging from disease screening to analyte sensing. Most contemporary PA imaging agents employ NIR-I light (650-900 nm) to generate an ultrasound signal; however, there is significant interference from endogenous biomolecules such as hemoglobin that are PA active in this window. Transitioning to longer excitation wavelengths (i.e., NIR-II) reduces the background and facilitates the detection of low abundance targets (e.g., nitric oxide, NO). In this study, we employed a two-phase tuning approach to develop APNO-1080, a NIR-II NO-responsive probe for deep-tissue PA imaging. First, we performed Hammett and Brønsted analyses to identify a highly reactive and selective aniline-based trigger that reacts with NO via N-nitrosation chemistry. Next, we screened a panel of NIR-II platforms to identify chemical structures that have a low propensity to aggregate since this can diminish the PA signal. In a head-to-head comparison with a NIR-I analogue, APNO-1080 was 17.7-fold more sensitive in an in vitro tissue phantom assay. To evaluate the deep-tissue imaging capabilities of APNO-1080 in vivo, we performed PA imaging in an orthotopic breast cancer model and a heterotopic lung cancer model. Relative to control mice not bearing tumors, the normalized turn-on response was 1.3 ± 0.12 and 1.65 ± 0.07, respectively.
Collapse
Affiliation(s)
- Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Amanda K East
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher J Reinhardt
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Adam C Sedgwick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shengzhang Su
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|