1
|
Sojka PA. Glucose Homeostasis and Derangement in Birds. Vet Clin North Am Exot Anim Pract 2024:S1094-9194(24)00045-8. [PMID: 39414473 DOI: 10.1016/j.cvex.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Birds (class Aves) have 1.5 to 2 times higher blood glucose concentrations than mammals of comparable sizes. The reasons for this have been studied and are believed to be multifactorial. There is low expression of insulin receptors, decreased sensitivity of the pancreatic β-cells to glucose, an absent or dysfunctional glucose transporter type 4 pathway, and increased blood glucagon concentrations. Glucagon and somatostatin appear to play a greater role than insulin in glucose homeostasis in birds. Severe hyperglycemia in birds can be attributed to diabetes mellitus, necessitating therapy to prevent short-term and long-term deleterious effects.
Collapse
Affiliation(s)
- Peter A Sojka
- Avian & Exotics Department, Pieper Memorial Veterinary Hospital, 730 Randolph Road, Middletown, CT 06457, USA.
| |
Collapse
|
2
|
Hu YX, Zhang DD, Chen C, Li A, Bai DP. Mechanism of fibroblast growth factor 1 regulating fatty liver disorder in mule ducks. Poult Sci 2024; 103:103818. [PMID: 38733755 PMCID: PMC11101971 DOI: 10.1016/j.psj.2024.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Ying-Xiu Hu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ding-Ding Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ang Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Basile AJ, Kreisler A, Hassen R, Singh K, Symes M, Larson G, de Sousa MF, Sweazea KL. Acute metformin induces hyperglycemia in healthy adult mourning doves, Zenaida macroura. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111594. [PMID: 38311294 DOI: 10.1016/j.cbpa.2024.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Birds have the highest blood glucose among vertebrates. Several mechanisms may explain this including the lack of a functional insulin-responsive glucose transport protein, high glucagon concentrations, and reliance on lipid oxidation resulting in the production of gluconeogenic precursors. The hypothesis was that interruption of gluconeogenesis using the diabetes medication metformin would lower glucose concentrations in wild-caught birds. We captured two cohorts of adult mourning doves, Zenaida macroura, and acclimated them to captivity for two weeks. In this crossover study, cohort 1 was administered a single dose of one of the following oral treatments each week: metformin (150 or 300 mg/kg), glycogenolysis inhibitor (2.5 mg/kg 1,4-dideoxy-1,4-imino-D-arabinitol (DAB)), or water (50 μL). Whole blood glucose was measured using a glucometer at baseline, 30, 60, and 120 min following the oral doses. In contrast to mammals and chickens, 300 mg/kg metformin did not alter blood glucose (p > 0.05) whereas 150 mg/kg metformin increased blood glucose compared to water (p = 0.043). To examine whether 150 mg/kg metformin stimulated glycogenolysis, we co-administered 150 mg/kg metformin and 2.5 mg/kg DAB, which prevented the hyperglycemic response. Cohort 2 was administered the same treatments and the early response was examined (0, 5, 10, 15 min). Low-dose metformin increased blood glucose within 5 min (p = 0.039) whereas the high dose had no effect. DAB did not prevent the early response to metformin nor did it alter blood glucose concentrations when administered alone (p = 0.887). In conclusion, metformin increases endogenous blood glucose via glycogenolysis in healthy adult male mourning doves.
Collapse
Affiliation(s)
- Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Avin Kreisler
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ryan Hassen
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Kavita Singh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Maggie Symes
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America
| | - Gale Larson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | | | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America.
| |
Collapse
|
4
|
Vágási CI, Vincze O, Adámková M, Kauzálová T, Lendvai ÁZ, Pătraş LI, Pénzes J, Pap PL, Albrecht T, Tomášek O. Songbirds avoid the oxidative stress costs of high blood glucose levels: a comparative study. J Exp Biol 2024; 227:jeb246848. [PMID: 38054362 DOI: 10.1242/jeb.246848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Chronically high blood glucose levels (hyperglycaemia) can compromise healthy ageing and lifespan at the individual level. Elevated oxidative stress can play a central role in hyperglycaemia-induced pathologies. Nevertheless, the lifespan of birds shows no species-level association with blood glucose. This suggests that the potential pathologies of high blood glucose levels can be avoided by adaptations in oxidative physiology at the macroevolutionary scale. However, this hypothesis remains unexplored. Here, we examined this hypothesis using comparative analyses controlled for phylogeny, allometry and fecundity based on data from 51 songbird species (681 individuals with blood glucose data and 1021 individuals with oxidative state data). We measured blood glucose at baseline and after stress stimulus and computed glucose stress reactivity as the magnitude of change between the two time points. We also measured three parameters of non-enzymatic antioxidants (uric acid, total antioxidants and glutathione) and a marker of oxidative lipid damage (malondialdehyde). We found no clear evidence for blood glucose concentration being correlated with either antioxidant or lipid damage levels at the macroevolutionary scale, as opposed to the hypothesis postulating that high blood glucose levels entail oxidative costs. The only exception was the moderate evidence for species with a stronger stress-induced increase in blood glucose concentration evolving moderately lower investment into antioxidant defence (uric acid and glutathione). Neither baseline nor stress-induced glucose levels were associated with oxidative physiology. Our findings support the hypothesis that birds evolved adaptations preventing the (glyc)oxidative costs of high blood glucose observed at the within-species level. Such adaptations may explain the decoupled evolution of glycaemia and lifespan in birds and possibly the paradoxical combination of long lifespan and high blood glucose levels relative to mammals.
Collapse
Affiliation(s)
- Csongor I Vágási
- Evolutionary Ecology Group, Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Orsolya Vincze
- Evolutionary Ecology Group, Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
- Wetland Ecology Research Group, HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, 4026 Debrecen, Hungary
| | - Marie Adámková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 60300 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Tereza Kauzálová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura I Pătraş
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Janka Pénzes
- Evolutionary Ecology Group, Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Péter L Pap
- Evolutionary Ecology Group, Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Tomáš Albrecht
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 60300 Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, 12800 Prague 2, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 60300 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| |
Collapse
|