1
|
Zhu X, Liu X, Liu T, Ren X, Bai X. Sex differences in antioxidant ability and energy metabolism level resulting in the difference of hypoxia tolerance in red swamp crayfish (Procambarus clarkii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101136. [PMID: 37683360 DOI: 10.1016/j.cbd.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Sexual dimorphism widely exists in crustaceans. However, sex differences in the hypoxia tolerance of crayfish have rarely been reported. In this study, the differences in hypoxia tolerance between the two sexes of crayfish were assessed according to mortality, pathological features of hepatopancreas, antioxidant enzyme activity and differentially expressed genes (DEGs) analysis using transcriptome. The results showed that male crayfish displayed significantly higher mortality than the female under hypoxia stress (p < 0.05). Furthermore, female crayfish demonstrated higher levels of antioxidant enzyme activity. Hematoxylin-eosin staining analysis revealed that the damage of hepatopancreas was more severe in the male crayfish compared to the female crayfish. Additionally, there was higher expression level of the DEGs in hypoxia-inducible factor (HIF) pathway and higher energy metabolism level in the female compared to the male. Together, these findings suggest that the female crayfish with higher antioxidant ability and energy metabolism level exhibits stronger hypoxia tolerance than the male crayfish, providing the theoretical support for investigating sex differences in hypoxia tolerance among crustaceans.
Collapse
Affiliation(s)
- Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuewei Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Yu Y, Chen M, Lu ZY, Liu Y, Li B, Gao ZX, Shen ZG. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113638. [PMID: 35597142 DOI: 10.1016/j.ecoenv.2022.113638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, concerns for species that sex differentiation is influenced by temperature in the context of global warming have increased because disrupted operational sex ratios could threaten population maintenance. In contrast, little attention has been given to the reproductive ability of populations that experienced elevated temperatures. In this study, we demonstrated that high temperature (HT) would decrease population size via three different aspects of reproductive ability for the first time. We show that, in a thermo-sensitive teleost yellow catfish, a short period of HT (+3 °C) exposure during the critical period of sex differentiation leads to a different percentage of masculinization of XX genotypic females (1-23%) in wet-lab and natural water bodies. Combining the results of gonadal appearance, histology, sperm parameters, and fertilization rate, we found that XX pseudo-males induced by HT display significantly discounted fertility and reproductive performance compared to XY normal males. We demonstrate that the survival of the XY genotype is lower than XX genotype under environmental stress, including HT, hypoxia, and parasite infection, and the differential survival seems unrelated to male-biased sexual size dimorphism. The mathematical model predicts that the phenotypic female percent will be stabilized at 50% and the population will be sustainably maintained when masculinizing force is less than 0.5, while HT will put the population in danger when the masculinizing force exceeds 0.5. However, when we combine the real-world data of reproductive ability and mathematic model, our results suggest the population size decreases and the long-term survival of the studied species are threatened under the projected pace of increasing temperature. These findings will be useful for understanding the long-term effects of increasing temperature on sex ratio, reproduction and population maintenance in teleost.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zi-Yi Lu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Ya Liu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Bo Li
- Institute of Fisheries, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Ze-Xia Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
3
|
CECCHETTO NICOLÁSR, MEDINA SUSANAM, BAUDINO FLORENCIA, IBARGÜENGOYTÍA NORAR. Wintertime tales: How the lizard Liolaemus lineomaculatus endures the temperate cold climate of Patagonia, Argentina. AN ACAD BRAS CIENC 2022; 94:e20210758. [DOI: 10.1590/0001-3765202220210758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - SUSANA M. MEDINA
- Consejo Nacional de Investigaciones Científicas y Técnicas (CIEMEP-CONICET), Argentina
| | - FLORENCIA BAUDINO
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Argentina
| | | |
Collapse
|
4
|
Sex-dependent elevational effects on bird feather moult. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Katzenberger M, Duarte H, Relyea R, Beltrán JF, Tejedo M. Variation in upper thermal tolerance among 19 species from temperate wetlands. J Therm Biol 2021; 96:102856. [PMID: 33627284 DOI: 10.1016/j.jtherbio.2021.102856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Communities usually possess a multitude of interconnected trophic interactions within food webs. Their regulation generally depends on a balance between bottom-up and top-down effects. However, if sensitivity to temperature varies among species, rising temperatures may change trophic interactions via direct and indirect effects. We examined the critical thermal maximum (CTmax) of 19 species from temperate wetlands (insect predators, amphibian larvae, zooplankton and amphipods) and determined if they vary in their sensitivity to warming temperatures. CTmax differed between the groups, with predatory insects having higher CTmax than amphibians (both herbivorous larval anurans and predatory larval salamanders), amphipods and zooplankton. In a scenario of global warming, these differences in thermal tolerance may affect top-down and bottom-up processes, particularly considering that insect predators are more likely to maintain or improve their performance at higher temperatures, which could lead to increased predation rates on the herbivores in the food web. Further studies are needed to understand how the energy flows through communities, how species' energy budgets may change and whether other physiological and behavioral responses (such as phenotypic plasticity and thermoregulation) can buffer or increase these changes in the top-down regulation of wetland food webs.
Collapse
Affiliation(s)
- Marco Katzenberger
- Department of Evolutionary Ecology, Estación Biológica Doñana, CSIC, c/ Américo Vespucio s/n, 41092, Sevilla, Spain; Laboratório de Bioinformática e Biologia Evolutiva, Department of Genetics, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife, Pernambuco, Brazil.
| | - Helder Duarte
- Department of Evolutionary Ecology, Estación Biológica Doñana, CSIC, c/ Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Rick Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Juan Francisco Beltrán
- Departament of Zoology, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica Doñana, CSIC, c/ Américo Vespucio s/n, 41092, Sevilla, Spain
| |
Collapse
|
6
|
Sanabria EA, González E, Quiroga LB, Tejedo M. Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation. J Zool (1987) 2020. [DOI: 10.1111/jzo.12850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. A. Sanabria
- Instituto de Ciencias Básicas Facultad de Filosofía Humanidades y Artes Universidad Nacional de San Juan San Juan Argentina
- Facultad de Ciencias Exactas y Naturales Universidad Nacional de Cuyo Mendoza Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
| | - E. González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
- Museo de La Plata Universidad Nacional de La Plata La Plata Argentina
| | - L. B. Quiroga
- Instituto de Ciencias Básicas Facultad de Filosofía Humanidades y Artes Universidad Nacional de San Juan San Juan Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata Argentina
| | - M. Tejedo
- Departamento de Ecología Evolutiva Estación Biológica de Doñana CSIC Sevilla Spain
| |
Collapse
|
7
|
Rebolledo AP, Sgrò CM, Monro K. Thermal performance curves reveal shifts in optima, limits and breadth in early life. J Exp Biol 2020; 223:jeb233254. [PMID: 33071221 DOI: 10.1242/jeb.233254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Understanding thermal performance at life stages that limit persistence is necessary to predict responses to climate change, especially for ectotherms whose fitness (survival and reproduction) depends on environmental temperature. Ectotherms often undergo stage-specific changes in size, complexity and duration that are predicted to modify thermal performance. Yet performance is mostly explored for adults, while performance at earlier stages that typically limit persistence remains poorly understood. Here, we experimentally isolate thermal performance curves at fertilization, embryo development and larval development stages in an aquatic ectotherm whose early planktonic stages (gametes, embryos and larvae) govern adult abundances and dynamics. Unlike previous studies based on short-term exposures, responses with unclear links to fitness or proxies in lieu of explicit curve descriptors (thermal optima, limits and breadth), we measured performance as successful completion of each stage after exposure throughout, and at temperatures that explicitly capture curve descriptors at all stages. Formal comparisons of descriptors using a combination of generalized linear mixed modelling and parametric bootstrapping reveal important differences among life stages. Thermal performance differs significantly from fertilization to embryo development (with thermal optimum declining by ∼2°C, thermal limits shifting inwards by ∼8-10°C and thermal breadth narrowing by ∼10°C), while performance declines independently of temperature thereafter. Our comparisons show that thermal performance at one life stage can misrepresent performance at others, and point to gains in complexity during embryogenesis, rather than subsequent gains in size or duration of exposure, as a key driver of thermal sensitivity in early life.
Collapse
Affiliation(s)
- Adriana P Rebolledo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| |
Collapse
|
8
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
9
|
O'Donnell MJ, Regish AM, McCormick SD, Letcher BH. How repeatable is CT max within individual brook trout over short- and long-time intervals? J Therm Biol 2020; 89:102559. [PMID: 32364992 DOI: 10.1016/j.jtherbio.2020.102559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022]
Abstract
As stream temperatures increase due to factors such as heated runoff from impervious surfaces, deforestation, and climate change, fish species adapted to cold water streams are forced to move to more suitable habitat, acclimate or adapt to increased thermal regimes, or die. To estimate the potential for adaptation, a (within individual) repeatable metric of thermal tolerance is imperative. Critical thermal maximum (CTmax) is a dynamic test that is widely used to measure thermal tolerance across many taxa and has been used in fishes for decades, but its repeatability in most species is unknown. CTmax tests increase water temperature steadily over time until loss of equilibrium (LOE) is achieved. To determine if CTmax is a consistent metric within individual fish, we measured CTmax on the same lab-held individually-marked adult brook trout Salvelinus fontinalis at three different times (August & September 2016, September 2017). We found that CTmax is a repeatable trait (Repeatability ± S.E.: 0.48 ± 0.14). CTmax of individuals males was consistent over time, but the CTmax of females increased slightly over time. This result indicates that CTmax is a robust, repeatable estimate of thermal tolerance in a cold-water adapted fish.
Collapse
Affiliation(s)
- M J O'Donnell
- US Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA.
| | - A M Regish
- US Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - S D McCormick
- US Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - B H Letcher
- US Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
10
|
Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 2019; 191:829-842. [PMID: 31705273 DOI: 10.1007/s00442-019-04547-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Temperature is one of the most influential drivers of physiological performance and behaviour in ectotherms, determining how these animals relate to their ecosystems and their ability to succeed in particular habitats. Here, we analysed the largest set of acceleration data compiled to date for elasmobranchs to examine the relationship between volitional activity and temperature in 252 individuals from 8 species. We calculated activation energies for the thermal performance response in each species and estimated optimum temperatures using an Arrhenius breakpoint analysis, subsequently fitting thermal performance curves to the activity data. Juveniles living in confined nursery habitats not only spent substantially more time above their optimum temperature and at the upper limits of their performance breadths compared to larger, less site-restricted animals, but also showed lower activation energies and broader performance curves. Species or life stages occupying confined habitats featured more generalist behavioural responses to temperature change, whereas wider ranging elasmobranchs were characterised by more specialist behavioural responses. The relationships between the estimated performance regimes and environmental temperature limits suggest that animals in confined habitats, including many juvenile elasmobranchs within nursery habitats, are likely to experience a reduction of performance under a warming climate, although their flatter thermal response will likely dampen this impact. The effect of warming on less site-restricted species is difficult to forecast since three of four species studied here did not reach their optimum temperature in the wild, although their specialist performance characteristics may indicate a more rapid decline should optimum temperatures be exceeded.
Collapse
|
11
|
Youngblood JP, da Silva CRB, Angilletta MJ, VandenBrooks JM. Oxygen Limitation Does Not Drive the Decreasing Heat Tolerance of Grasshoppers during Development. Physiol Biochem Zool 2019; 92:567-572. [PMID: 31567049 DOI: 10.1086/705439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Thermal physiology changes as organisms grow and develop, but we do not understand what causes these ontogenetic shifts. According to the theory of oxygen- and capacity-limited thermal tolerance, an organism's heat tolerance should change throughout ontogeny as its ability to deliver oxygen varies. As insects grow during an instar, their metabolic demand increases without a proportional increase in the size of tracheae that supply oxygen to the tissues. If oxygen delivery limits heat tolerance, the mismatch between supply and demand should make insects more susceptible to heat and hypoxia as they progress through an instar. We tested this hypothesis by measuring the heat tolerance of grasshoppers (Schistocerca americana) on the second and seventh days of the sixth instar, in either a normoxic or a hypoxic atmosphere (21% or 10% O2, respectively). As expected, heat tolerance decreased as grasshoppers grew larger. Yet contrary to expectation, hypoxia had no effect on heat tolerance across all stages and sizes. Although heat tolerance declines as grasshoppers grow, this pattern must stem from a mechanism other than oxygen limitation.
Collapse
|
12
|
Rusch TW, Adutwumwaah A, Beebe LE, Tomberlin JK, Tarone AM. The upper thermal tolerance of the secondary screwworm, Cochliomyia macellaria Fabricius (Diptera: Calliphoridae). J Therm Biol 2019; 85:102405. [DOI: 10.1016/j.jtherbio.2019.102405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 12/01/2022]
|
13
|
Agudelo-Cantero GA, Navas CA. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J Therm Biol 2019; 82:43-51. [PMID: 31128658 DOI: 10.1016/j.jtherbio.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Biological and methodological factors influence the upper thermal limits (UTL) of ectothermic animals, but most factors have been studied independently. Few studies have integrated variables, so our understanding about sources of UTL variation remains fragmentary. Thereby, we investigated synergic effects of experimental protocols (heating rates, ΔTs) and biological factors (ontogeny and body mass) on the UTL on the larvae of two anuran species (Physalaemus nattereri and Boana pardalis), specifically their Critical Thermal Maximum (CTmax). The species displayed slightly different responses to ΔTs: In B. pardalis tadpoles both average and variance of CTmax increased at a fastest ΔT, the same response happened in P. nattereri tadpoles at slow and moderate ΔTs. Also, the CTmax of P. nattereri declined at the end of metamorphosis independently of ΔT, but tadpoles at all developmental stages still displayed higher heat tolerance at the slow ΔT. Finally, we detected small, synergic effects of body mass and ΔTs on the CTmax of both species. In small B. pardalis tadpoles and premetamorphic P. nattereri tadpoles, body mass had a positive effect on CTmax, but only at slow and moderate ΔTs, probably indicating physiological responses. A similar trend was observed in large B. pardalis tadpoles at the fast ΔT, but this result is likely to be influenced by thermal inertia. Our findings contribute to integrate the understanding of factors influencing UTL in small ectothermic animals. This understanding is critical to discuss the physiological component of vulnerability to climate change that is related to acute temperatures.
Collapse
Affiliation(s)
- Gustavo A Agudelo-Cantero
- Graduate School Program in General Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| | - Carlos A Navas
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| |
Collapse
|
14
|
Barnes CL, Blay NW, Wilder SM. Upper thermal tolerances of different life stages, sexes, and species of widow spiders (Araneae, Theridiidae). JOURNAL OF INSECT PHYSIOLOGY 2019; 114:10-14. [PMID: 30742814 DOI: 10.1016/j.jinsphys.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Temperature strongly influences the physiology and behavior of ectotherms. Persistence within different environments can be limited by thermal tolerances. These thermal tolerances can also shift through life stages and differ between sexes. The critical thermal maximum (CTMax) defines the temperature at which animals experience unorganized locomotion or spasms. In this study, we tested if CTMax varied between a native and an invasive widow species. We separately tested if CTMax varied by widow life stage and sex. We predicted that the invasive species would have higher CTMax due to originally inhabiting warmer climates. We also predicted that juveniles and male widows would possess higher CTMax because they are more mobile and could experience a greater scope of thermal extremes throughout landscapes. We did not find a difference in CTMax between the species, but we did find differences across development stages. Temperature of spasms and death decreased with developmental stages, which corresponds with previous studies in spiders. Future studies of ontogenic and interspecific comparisons will be crucial for more broadly understanding how upper tolerances shapes species persistence in changing climates or ability to invade new habitats.
Collapse
Affiliation(s)
- Cody L Barnes
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States.
| | - Nicholas W Blay
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
15
|
Sasaki M, Hedberg S, Richardson K, Dam HG. Complex interactions between local adaptation, phenotypic plasticity and sex affect vulnerability to warming in a widespread marine copepod. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182115. [PMID: 31032052 PMCID: PMC6458359 DOI: 10.1098/rsos.182115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
- Author for correspondence: Matthew Sasaki e-mail:
| | | | | | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
16
|
Meijer CG, Warburton HJ, Harding JS, McIntosh AR. Shifts in population size structure for a drying-tolerant fish in response to extreme drought. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher G. Meijer
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Helen J. Warburton
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Jon S. Harding
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Angus R. McIntosh
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
17
|
Thermal tolerance varies with age and sex for the nonnative Italian Wall Lizard (Podarcis siculus) in Southern California. J Therm Biol 2018; 78:263-269. [DOI: 10.1016/j.jtherbio.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022]
|
18
|
Trochet A, Dupoué A, Souchet J, Bertrand R, Deluen M, Murarasu S, Calvez O, Martinez-Silvestre A, Verdaguer-Foz I, Darnet E, Chevalier HL, Mossoll-Torres M, Guillaume O, Aubret F. Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. J Therm Biol 2018; 77:38-44. [DOI: 10.1016/j.jtherbio.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
|
19
|
Source of environmental data and warming tolerance estimation in six species of North American larval anurans. J Therm Biol 2018; 76:171-178. [DOI: 10.1016/j.jtherbio.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 11/23/2022]
|
20
|
Thompson ME, Halstead BJ, Donnelly MA. Thermal quality influences habitat use of two anole species. J Therm Biol 2018; 75:54-61. [PMID: 30017052 DOI: 10.1016/j.jtherbio.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 10/14/2022]
Abstract
Regeneration of secondary forests on previously deforested or degraded land is one of the most dominant forms of land-use change in the tropics. However, the response of animal communities to forest regeneration is poorly understood. To evaluate support for thermal quality as a mechanism driving reptile species distributions during secondary forest succession, we measured operative temperatures and occupancy in three successional forest stages (pasture, secondary forest, and old growth forest) for two anole species common in the landscape (Norops humilis and Norops limifrons). We then measured thermal preference in laboratory experiments and used operative temperature and temperature preference measurements to determine how thermal quality of habitat changes over the course of secondary forest succession, and if occupancy varies as a function of thermal quality. We found that thermal quality was lowest in pasture habitat because of a large frequency of temperatures above the thermal preference range. However, in low thermal quality pasture sites, riparian habitats and remnant trees provided a thermal refuge for both lizard species. Our results support thermal quality as a mechanism for reptile species distributions in altered landscapes and highlight the importance of the maintenance of riparian corridors.
Collapse
Affiliation(s)
- Michelle E Thompson
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Brian J Halstead
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA 95620, USA
| | - Maureen A Donnelly
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
21
|
Sniegula S, Janssens L, Stoks R. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:113-122. [PMID: 28282618 DOI: 10.1016/j.aquatox.2017.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 05/28/2023]
Abstract
To understand the effects of pollutants in a changing world we need multistressor studies that combine pollutants with other stressors associated with global change such as heat waves. We tested for the delayed and combined impact of a heat wave during the egg stage and subsequent sublethal exposure to the pesticide esfenvalerate during the larval stage on life history and physiology in the larval and adult stage of the damselfly Lestes sponsa. We studied this in a common garden experiment with replicated central- and high latitude populations to explore potential effects of local thermal adaptation and differences in life history shaping the multistressor responses. Exposure of eggs to the heat wave had no effect on larval traits, yet had delayed costs (lower fat and flight muscle mass) in the adult stage thereby crossing two life history transitions. These delayed costs were only present in central-latitude populations potentially indicating their lower heat tolerance. Exposure of larvae to the pesticide reduced larval growth rate and prolonged development time, and across metamorphosis reduced the adult fat content and the flight muscle mass, yet did not affect the adult heat tolerance. The pesticide-induced delayed emergence was only present in the slower growing central-latitude larvae, possibly reflecting stronger selection to keep development fast in the more time-constrained high-latitude populations. We observed no synergistic interactions between the egg heat wave and the larval pesticide exposure. Instead the pesticide-induced reduction in fat content was only present in animals that were not exposed to the egg heat wave. Our results based on laboratory conditions highlight that multistressor studies should integrate across life stages to fully capture cumulative effects of pollutants with other stressors related to global change.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland; Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium.
| | - Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Cusaac JPW, Kremer V, Wright R, Henry C, Otter RR, Bailey FC. Effects of Maternally-Transferred Methylmercury on Stress Physiology in Northern Water Snake (Nerodia sipedon) Neonates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:725-731. [PMID: 26886428 DOI: 10.1007/s00128-016-1757-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Biomagnification of methylmercury in aquatic systems can cause elevated tissue mercury (Hg) and physiological stress in top predators. Mercury is known to affect stress hormone levels in mammals, birds and fish. In this study, the effects of maternally-transferred methylmercury on the stress physiology of Northern Water Snake (Nerodia sipedon) neonates were tested. Gravid females were dosed via force-fed capsules during late gestation with 0, 0.01, or 10 µg methylmercury per gram of body mass. Plasma corticosterone levels and leukocyte differentials were analyzed in baseline and confinement-stressed neonates from all dose levels. Neither Hg nor confinement stress had a significant effect on leukocyte differentials nor was Hg related to corticosterone levels. However, stress group neonates showed lower heterophil/lymphocyte ratios and this study was the first to show that neonate N. sipedon can upregulate CORT in response to stress. These results indicate that N. sipedon may be somewhat tolerant to Hg contamination.
Collapse
Affiliation(s)
- J Patrick W Cusaac
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
- Department of Zoology, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Victoria Kremer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Raymond Wright
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Cassandra Henry
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Ryan R Otter
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Frank C Bailey
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
23
|
The influence of thermal biology on road mortality risk in snakes. J Therm Biol 2016; 56:39-49. [DOI: 10.1016/j.jtherbio.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/12/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022]
|
24
|
Angilletta MJ, Zelic MH, Adrian GJ, Hurliman AM, Smith CD. Heat tolerance during embryonic development has not diverged among populations of a widespread species (Sceloporus undulatus). CONSERVATION PHYSIOLOGY 2013; 1:cot018. [PMID: 27293602 PMCID: PMC4806623 DOI: 10.1093/conphys/cot018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 05/30/2023]
Abstract
The frequency and magnitude of heat waves have increased in recent decades, imposing additional stresses on organisms in extreme environments. Most reptilian embryos are regularly exposed to thermal stress because they develop in shallow, warm soils for weeks to months. We studied cardiac performance during warming to infer lethal temperatures for embryonic lizards in the Sceloporus undulatus complex. Embryos from four populations throughout the geographical range (New Jersey, South Carolina, Colorado, and Arizona) were warmed at a rate observed in natural nests. Embryos from all populations exhibited a similar pattern of thermal sensitivity, as follows: heart rate rose between 34 and 41°C, remained stable between 41 and 44°C, and dropped sharply between 44 and 47°C. No embryos recovered from cardiac arrest, indicating that the upper lethal temperature was ≤47°C. Despite the putative selective pressures, the thermal limit to cardiac performance seems to have been conserved during the evolution of this species.
Collapse
Affiliation(s)
- Michael J. Angilletta
- Corresponding author: School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA. Tel: +1 480 727 6142.
| | | | | | | | | |
Collapse
|
25
|
van Heerwaarden B, Sgrò CM. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans. J Evol Biol 2013; 26:800-9. [PMID: 23517493 DOI: 10.1111/jeb.12090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Thermal tolerance is an important factor influencing the distribution of ectotherms, but our understanding of the ability of species to evolve different thermal limits is limited. Based on univariate measures of adaptive capacity, it has recently been suggested that species may have limited evolutionary potential to extend their upper thermal limits under ramping temperature conditions that better reflect heat stress in nature. To test these findings more broadly, we used a paternal half-sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila simulans. We assessed heat tolerance using static (basal and hardened) and ramping assays. Our analyses revealed significant evolutionary potential for all three measures of heat tolerance. Additive genetic variances were significantly different from zero for all three traits. Our G matrix analysis revealed that all three traits would contribute to a response to selection for increased heat tolerance. Significant additive genetic covariances and additive genetic correlations between static basal and hardened heat-knockdown time, marginally nonsignificant between static basal and ramping heat-knockdown time, indicate that direct and correlated responses to selection for increased upper thermal limits are possible. Thus, combinations of all three traits will contribute to the evolution of upper thermal limits in response to selection imposed by a warming climate. Reliance on univariate estimates of evolutionary potential may not provide accurate insight into the ability of organisms to evolve upper thermal limits in nature.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
26
|
Evolutionary determinants of population differences in population growth rate × habitat temperature interactions in Chironomus riparius. Oecologia 2012; 172:585-94. [DOI: 10.1007/s00442-012-2517-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
|
27
|
Madeira D, Narciso L, Cabral HN, Diniz MS, Vinagre C. Thermal tolerance of the crab Pachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress Chaperones 2012; 17:707-16. [PMID: 22619030 PMCID: PMC3468680 DOI: 10.1007/s12192-012-0345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022] Open
Abstract
Temperature is one of the most important variables influencing organisms, especially in the intertidal zone. This work aimed to test physiological and molecular intraspecific differences in thermal tolerance of the crab Pachygrapsus marmoratus (Fabricius, 1787). The comparisons made focused on sex, size, and habitat (estuary and coast) differences. The physiological parameter was upper thermal limit, tested via the critical thermal maximum (CTMax) and the molecular parameter was total heat shock protein 70 (Hsp70 and Hsp70 plus Hsc70) production, quantified via an enzyme-linked imunosorbent assay. Results showed that CTMax values and Hsp70 production are higher in females probably due to different microhabitat use and potentially due to different hormonal regulation in males and females. Among females, non-reproducing ones showed a higher CTMax value, but no differences were found in Hsp70, even though reproducing females showed higher variability in Hsp70 amounts. As reproduction takes up a lot of energy, its allocation for other activities, including stress responses, is lower. Juveniles also showed higher CTMax and Hsp70 expression because they occur in greater shore heights and ageing leads to alterations in protein synthesis. Comparing estuarine and coastal crabs, no differences were found in CTMax but coastal crabs produce more Hsp70 than estuarine crabs because they occur in drier and hotter areas than estuarine ones, which occur in moister environments. This work shows the importance of addressing intraspecific differences in the stress response at different organizational levels. This study shows that these differences are key factors in stress research, climate research, and environmental monitoring.
Collapse
Affiliation(s)
- D Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
28
|
WILLIAMS BR, VAN HEERWAARDEN B, DOWLING DK, SGRÒ CM. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. J Evol Biol 2012; 25:1415-26. [DOI: 10.1111/j.1420-9101.2012.02536.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One 2011; 6:e14806. [PMID: 21541309 PMCID: PMC3082523 DOI: 10.1371/journal.pone.0014806] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 01/18/2011] [Indexed: 11/30/2022] Open
Abstract
Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism has facilitated the current success of invasive species and could lead to greater success of invasives than native species as global warming continues.
Collapse
|
30
|
Willett CS. POTENTIAL FITNESS TRADE-OFFS FOR THERMAL TOLERANCE IN THE INTERTIDAL COPEPOD TIGRIOPUS CALIFORNICUS. Evolution 2010; 64:2521-34. [DOI: 10.1111/j.1558-5646.2010.01008.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 2008; 83:339-55. [PMID: 18979595 DOI: 10.1111/j.1469-185x.2008.00046.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.
Collapse
Affiliation(s)
- Ken Bowler
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | |
Collapse
|
32
|
|
33
|
Ragland GJ, Kingsolver JG. EVOLUTION OF THERMOTOLERANCE IN SEASONAL ENVIRONMENTS: THE EFFECTS OF ANNUAL TEMPERATURE VARIATION AND LIFE-HISTORY TIMING IN WYEOMYIA SMITHII. Evolution 2008; 62:1345-57. [DOI: 10.1111/j.1558-5646.2008.00367.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B 2007; 178:343-9. [PMID: 18071715 DOI: 10.1007/s00360-007-0227-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 11/17/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
Abstract
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for approximately 5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35 degrees C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1 degrees C, CTMin from 4.9 to 8.0 degrees C, and CTMax from 42.0 to 44.5 degrees C at the change-over of acclimation temperature from 20 to 35 degrees C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25 degrees C treatment (38.1 degrees C) and narrowest in the 35 degrees C treatment (36.5 degrees C), with the 20 degrees C treatment in between (37.2 degrees C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.
Collapse
|
35
|
Xu XF, Ji X. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi. Comp Biochem Physiol A Mol Integr Physiol 2005; 143:118-24. [PMID: 16380280 DOI: 10.1016/j.cbpa.2005.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 09/14/2005] [Accepted: 10/20/2005] [Indexed: 11/29/2022]
Abstract
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.
Collapse
Affiliation(s)
- Xue-Feng Xu
- Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | | |
Collapse
|