1
|
Chang RJA, Celino-Brady FT, Seale AP. Changes in cortisol and corticosteroid receptors during dynamic salinity challenges in Mozambique tilapia. Gen Comp Endocrinol 2023; 342:114340. [PMID: 37364646 DOI: 10.1016/j.ygcen.2023.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
In estuarine environments, euryhaline fish maintain a narrow range of internal osmolality despite daily changes in environmental salinity that can range from fresh water (FW) to seawater (SW). The capacity of euryhaline fish to maintain homeostasis in a range of environmental salinities is primarily facilitated by the neuroendocrine system. One such system, the hypothalamic-pituitary-interrenal (HPI) axis, culminates in the release of corticosteroids such as cortisol into circulation. Cortisol functions as both a mineralocorticoid and glucocorticoid in fish because of its roles in osmoregulation and metabolism, respectively. The gill, a key site for osmoregulation, and the liver, the primary storage site for glucose, are known targets of cortisol's actions during salinity stress. While cortisol facilitates acclimation to SW environments, less is known on its role during FW adaptation. In this study, we characterized the responses of plasma cortisol, mRNA expression of pituitary pro-opiomelanocortin (pomc), and mRNA expression of liver and gill corticosteroid receptors (gr1, gr2, and mr) in the euryhaline Mozambique tilapia (Oreochromis mossambicus) under salinity challenges. Specifically, tilapia were subjected to salinity transfer regimes from steady-state FW to SW, SW to FW (experiment 1) or steady state FW or SW to tidal regimen (TR, experiment 2). In experiment 1, fish were sampled at 0 h, 6 h, 1, 2, and 7 d post transfer; while in experiment 2, fish were sampled at day 0 and day 15. We found a rise in pituitary pomc expression and plasma cortisol following transfer to SW while branchial corticosteroid receptors were immediately downregulated after transfer to FW. Moreover, branchial expression of corticosteroid receptors changed with each salinity phase of the TR, suggesting rapid environmental modulation of corticosteorid action. Together, these results support the role of the HPI-axis in promoting salinity acclimation, including in dynamically-changing environments.
Collapse
Affiliation(s)
- Ryan J A Chang
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
Aedo JE, Aravena-Canales D, Zuloaga R, Alegría D, Valdés JA, Molina A. Early regulation of corticosteroid receptor expression in rainbow trout (Oncorhynchus mykiss) gills is mediated by membrane-initiated cortisol signaling. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111423. [PMID: 37044370 DOI: 10.1016/j.cbpa.2023.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Cortisol is a key stress-related hormone involved in the physiological adjustments of fish. In gills, cortisol contributes to acclimatization to changes in environmental salinity, promoting both ion uptake or salt excretion. Cortisol exerts its biological effects through its interaction with specific intracellular glucocorticoid (GR) and mineralocorticoid (MR) receptors. Additionally, the further identification of GR and MR on the surface of different tissues, together with the existence of cortisol-mediated effects observed using membrane-impermeable analogs (e.g., cortisol-BSA), supports the existence of membrane-initiated cortisol actions in fish. Nevertheless, the impact of this alternative cortisol mechanism in relevant tissues for fish salinity acclimation, such as gill, is unknown. In this work, we sought to explore the contribution of rapid membrane-initiated cortisol on GR and MR regulation in rainbow trout (Oncorhynchus mykiss) gills using in vivo and in vitro approaches. Juvenile rainbow trout intraperitoneally injected with cortisol or cortisol-BSA showed increased gr2 but no gr1 or mr mRNA levels in gills after one hour of treatment. This result was further confirmed using RT-gills-W1 cell lines stimulated with both versions of cortisol. Interestingly, after three and six hours of cortisol or cortisol-BSA treatment, there were no changes in the mRNA levels of any corticosteroid receptor in RT-gills-W1 cells. Finally, using immunofluorescence analysis, we identified GR and MR in rainbow trout gill cells localized on the cell surface. Considering the in vivo and in vitro results of this work, we suggest that membrane-initiated cortisol action contributes to the early expression of gr2 in rainbow trout gills during salinity acclimation.
Collapse
Affiliation(s)
- Jorge E Aedo
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Daniela Aravena-Canales
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Denisse Alegría
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan A Valdés
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile.
| |
Collapse
|
3
|
Romero A, Vega M, Santibáñez N, Spies J, Pérez T, Enríquez R, Kausel G, Oliver C, Oyarzún R, Tort L, Vargas-Chacoff L. Salmo salar glucocorticoid receptors analyses of alternative splicing variants under stress conditions. Gen Comp Endocrinol 2020; 293:113466. [PMID: 32194046 DOI: 10.1016/j.ygcen.2020.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022]
Abstract
Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.
Collapse
Affiliation(s)
- Alex Romero
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile.
| | - Matías Vega
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Natacha Santibáñez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Johana Spies
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Tatiana Pérez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile.
| | - Gudrun Kausel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral De Chile, Chile.
| | - Cristian Oliver
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Zwollo P. The humoral immune system of anadromous fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:24-33. [PMID: 28057508 DOI: 10.1016/j.dci.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
The immune system of anadromous fish is extremely complex, a direct consequence of their diadromous nature. Hormone levels fluctuate widely throughout their life cycle, as fish move between fresh and salt water. This poses major challenges to the physiology of anadromous fish, including adaptation to very different saline environments, distinct pathogen fingerprints, and different environmental stressors. Elevated cortisol and sex hormone levels inhibit B lymphopoiesis and IgM+ antibody responses, while catecholamines, growth hormones and thyroid hormones are generally stimulatory and enhance the humoral immune response. Immunological memory in the form of long-lived plasma cells likely plays important roles in health and survival during the life cycle of anadromous fishes. This review discusses some of the complex immune-endocrine pathways in anadromous fish, focusing on essential roles for B lineage cells in the successful completion of their life cycle. A discussion is included on potential differences in immuno-competence between wild and hatchery-raised fish.
Collapse
Affiliation(s)
- Patty Zwollo
- Department of Biology, The College of William and Mary, Williamsburg, VA, 23185, United States.
| |
Collapse
|
5
|
Chang CH, Huang JJ, Yeh CY, Tang CH, Hwang LY, Lee TH. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish ( Chanos chanos) under Hypothermal Stress. Front Physiol 2018; 9:81. [PMID: 29483878 PMCID: PMC5816346 DOI: 10.3389/fphys.2018.00081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP (Ccpygl), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jian-Jun Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Yi Yeh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Lie-Yueh Hwang
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Yulin, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Gullian Klanian M, Zapata Pérez O, Vela-Magaña MA. Phenotypic plasticity in gene expression and physiological response in red drum Sciaenops ocellatus exposed to a long-term freshwater environment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:73-85. [PMID: 28900798 DOI: 10.1007/s10695-017-0414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.
Collapse
Affiliation(s)
- Mariel Gullian Klanian
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941 Carretera Mérida- Progreso, Post Office Box 97300, Mérida, Yucatán, Mexico.
| | - Omar Zapata Pérez
- CINVESTAV-IPN, Unidad Mérida Km 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Miguel Angel Vela-Magaña
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941 Carretera Mérida- Progreso, Post Office Box 97300, Mérida, Yucatán, Mexico
| |
Collapse
|
7
|
Thanh NM, Jung H, Lyons RE, Njaci I, Yoon BH, Chand V, Tuan NV, Thu VTM, Mather P. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus). Mar Genomics 2015; 23:87-97. [PMID: 25979246 DOI: 10.1016/j.margen.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/17/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- Animal Genetics Laboratory, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia.
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Byoung-Ha Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejoen 305-333, Republic of Korea.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
8
|
Hecht BC, Valle ME, Thrower FP, Nichols KM. Divergence in expression of candidate genes for the smoltification process between juvenile resident rainbow and anadromous steelhead trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:638-656. [PMID: 24952010 DOI: 10.1007/s10126-014-9579-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHβ, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRβ, and Vdac2.
Collapse
Affiliation(s)
- Benjamin C Hecht
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
9
|
Kugathas S, Runnalls TJ, Sumpter JP. Metabolic and reproductive effects of relatively low concentrations of beclomethasone dipropionate, a synthetic glucocorticoid, on fathead minnows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9487-9495. [PMID: 23869980 DOI: 10.1021/es4019332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pharmaceuticals present in the aquatic environment could adversely affect aquatic organisms. Synthetic glucocorticoids (GC) are used in large quantities as anti-inflammatory drugs and have been reported to be present in river water. In order to assess the impact of environmental concentrations of GCs, an in vivo experiment was conducted with adult fathead minnows. Fish were exposed to 0.1 μg/L, 1 μg/L, or 10 μg/L beclomethasone dipropionate (BCMD) via a flow-through system over a period of 21 days. Similar duplicate tanks served as control, with no chemical added. There was a concentration-related increase in plasma glucose concentration and a decrease in blood lymphocyte count. Induction of male secondary sexual characters and a decreasing trend in plasma vitellogenin (Vtg) concentrations in female fish were observed with increasing exposure concentration of BCMD. Expression profiles of selected genes (phosphoenolpyruvate carboxykinase - PEPCK, glucocorticoid receptor - GR, and Vtg) in liver also demonstrated concentration-related effects at all three tested concentrations. The results suggest that GCs could cause effects in lower micrograms per liter concentrations that could be environmentally relevant for total GCs present in the environment. Therefore, studies to determine the environmental concentrations of GCs and no effect concentrations are needed to assess if GCs pose a risk to the aquatic environment.
Collapse
Affiliation(s)
- Subramaniam Kugathas
- Institute for the Environment, Brunel University , Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | | | | |
Collapse
|
10
|
Lin YS, Tsai SC, Lin HC, Hsiao CD, Wu SM. Changes of glycogen metabolism in the gills and hepatic tissue of tilapia (Oreochromis mossambicus) during short-term Cd exposure. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:296-304. [PMID: 21745594 DOI: 10.1016/j.cbpc.2011.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/11/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022]
Abstract
The aim of the study was to test the hypothesis that the mechanism of glycogen metabolism has taken place in gills rather than in liver during Cd exposure. Male tilapia were exposed to 44.45 μM ambient Cd for 12h, and we found blood glucose significantly increased, however, lactate levels showed no significant changes. The glycogen phosphorylase (GP) activity increased immediately after 0.75 to 3h of Cd exposure in the gills, and after 1 to 6h in the liver, respectively. In addition, the glycogen level depleted faster in the gills than in the liver. Plasma cortisol level increased from 0.25 to 1h and recovered after 3h, while the glucagon did not significantly change during Cd exposure. Glucocorticoid receptor (GR) mRNA expression decreased after 0.75 h in the gills, while it significantly increased after 6h in the liver. Ca(2+), Na(+), Cl(-), and K(+) significantly decreased upon Cd exposure within 6h following Cd-induced toxic stress. We suggested that the cortisol is the spontaneous stimulation of glycogen metabolism in the gills, and it triggers a subsequent energy supply later in the liver. Taken together, the profile of glycogen metabolism between gills and liver during Cd-exposure stress provide good support to our hypothesis.
Collapse
Affiliation(s)
- Yu-Siang Lin
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Dietary Lecithin Source Affects Growth Potential and Gene Expression in Sparus aurata Larvae. Lipids 2010; 45:1011-23. [DOI: 10.1007/s11745-010-3471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
12
|
Gravel A, Wilson JM, Pedro DFN, Vijayan MM. Non-steroidal anti-inflammatory drugs disturb the osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:481-90. [PMID: 19049905 DOI: 10.1016/j.cbpc.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
While detectable levels of non-steroidal anti-inflammatory drugs (NSAIDs) have been reported in various aquatic habitats, little is known about the mechanism of action of these pharmaceutical drugs on organisms. Recently we demonstrated that NSAIDs disrupt corticosteroidogenesis in rainbow trout (Oncorhynchus mykiss). As cortisol is a seawater adapting hormone, we hypothesized that exposure to NSAIDs will impair the hyposmoregulatory capacity of this species in seawater. Trout were exposed to either waterborne salicylate or ibuprofen in fresh water for four days and the salinity switched to 50% seawater for two days, followed by 100% seawater and sampled two days later. NSAIDs disturbed the seawater-induced elevation in plasma osmolality and concentrations of Cl(-) and K(+), but not Na(+) in rainbow trout. This was accompanied by enhanced gill glycolytic capacity and reduced liver glycogen content in seawater with NSAIDs, suggesting enhanced metabolic demand to fuel ion pumps. While salicylate did not affect gill Na(+)/K(+)-ATPase activity, ibuprofen inhibited the seawater-induced elevation in gill Na(+)/K(+)-ATPase activity. The drugs also further enhanced the seawater-induced elevation in plasma cortisol concentration; this response was greater with salicylate compared to ibuprofen. There were no changes in the transcript levels of key proteins involved in steroidogenesis with NSAIDs, whereas gill and brain GR protein expression expression was reduced with salicylate. Altogether, salicylate and ibuprofen exposures impaired the hyposmoregulatory capacity of rainbow trout in seawater, but the mode of action of the two drugs in bringing about these changes appears distinct in trout.
Collapse
Affiliation(s)
- Amélie Gravel
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Current World Literature. Curr Opin Obstet Gynecol 2008; 20:320-3. [DOI: 10.1097/gco.0b013e328304362f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Nilsen TO, Ebbesson LOE, Kiilerich P, Björnsson BT, Madsen SS, McCormick SD, Stefansson SO. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation. Gen Comp Endocrinol 2008; 155:762-72. [PMID: 17904138 DOI: 10.1016/j.ygcen.2007.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/06/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11beta-hydroxysteroid dehydrogenase type-2 (11beta-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11beta-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11beta-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon.
Collapse
Affiliation(s)
- Tom O Nilsen
- Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020, Norway.
| | | | | | | | | | | | | |
Collapse
|