1
|
Jayamanna Mohottige MW, Gardner CE, Nye-Wood MG, Farquharson KA, Juhász A, Belov K, Hogg CJ, Peel E, Colgrave ML. Bioactive components in the marsupial pouch and milk. Nutr Res Rev 2024:1-12. [PMID: 39551618 DOI: 10.1017/s0954422424000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Marsupials give birth to immunologically naïve young after a relatively short gestation period compared with eutherians. Consequently, the joey relies significantly on maternal protection, which is the focus of the present review. The milk and the pouch environment are essential contributors to maternal protection for the healthy development of joeys. In this review, we discuss bioactive components found in the marsupial pouch and milk that form cornerstones of maternal protection. These bioactive components include immune cells, immunoglobulins, the S100 family of calcium-binding proteins, lysozymes, whey proteins, antimicrobial peptides and other immune proteins. Furthermore, we investigated the possibility of the presence of plurifunctional components in milk and pouches that are potentially bioactive. These compounds include caseins, vitamins and minerals, oligosaccharides, lipids and microRNAs. Where applicable, this review addresses variability in bioactive components during different phases of lactation, designed to fulfil the immunological needs of the growing pouch young. Yet, there are numerous additional research opportunities to pursue, including uncovering novel bioactive components and investigating their modes of action, dynamics, stability and ability to penetrate the gut epithelium to facilitate systemic effects.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Chloe E Gardner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | | | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Emma Peel
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michelle L Colgrave
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Park J, Ke W, Kaage A, Feigin CY, Pritykin Y, Donia MS, Mallarino R. Marsupial immune protection is shaped by enhancer sharing and gene cluster duplication of cathelicidin antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605640. [PMID: 39211247 PMCID: PMC11361154 DOI: 10.1101/2024.07.29.605640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.
Collapse
|
3
|
Peel E, Hogg C, Belov K. Characterisation of defensins across the marsupial family tree. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105207. [PMID: 38797458 DOI: 10.1016/j.dci.2024.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Defensins are antimicrobial peptides involved in innate immunity, and gene number differs amongst eutherian mammals. Few studies have investigated defensins in marsupials, despite their potential involvement in immunological protection of altricial young. Here we use recently sequenced marsupial genomes and transcriptomes to annotate defensins in nine species across the marsupial family tree. We characterised 35 alpha and 286 beta defensins; gene number differed between species, although Dasyuromorphs had the largest repertoire. Defensins were encoded in three gene clusters within the genome, syntenic to eutherians, and were expressed in the pouch and mammary gland. Marsupial beta defensins were closely related to eutherians, however marsupial alpha defensins were more divergent. We identified marsupial orthologs of human DEFB3 and 6, and several marsupial-specific beta defensin lineages which may have novel functions. Marsupial predicted mature peptides were highly variable in length and sequence composition. We propose candidate peptides for future testing to elucidate the function of marsupial defensins.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Carolyn Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
4
|
Ockert LE, McLennan EA, Fox S, Belov K, Hogg CJ. Characterising the Tasmanian devil (Sarcophilus harrisii) pouch microbiome in lactating and non-lactating females. Sci Rep 2024; 14:15188. [PMID: 38956276 PMCID: PMC11220038 DOI: 10.1038/s41598-024-66097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Wildlife harbour a diverse range of microorganisms that affect their health and development. Marsupials are born immunologically naïve and physiologically underdeveloped, with primary development occurring inside a pouch. Secretion of immunological compounds and antimicrobial peptides in the epithelial lining of the female's pouch, pouch young skin, and through the milk, are thought to boost the neonate's immune system and potentially alter the pouch skin microbiome. Here, using 16S rRNA amplicon sequencing, we characterised the Tasmanian devil pouch skin microbiome from 25 lactating and 30 non-lactating wild females to describe and compare across these reproductive stages. We found that the lactating pouch skin microbiome had significantly lower amplicon sequence variant richness and diversity than non-lactating pouches, however there was no overall dissimilarity in community structure between lactating and non-lactating pouches. The top five phyla were found to be consistent between both reproductive stages, with over 85% of the microbiome being comprised of Firmicutes, Proteobacteria, Fusobacteriota, Actinobacteriota, and Bacteroidota. The most abundant taxa remained consistent across all taxonomic ranks between lactating and non-lactating pouch types. This suggests that any potential immunological compounds or antimicrobial peptide secretions did not significantly influence the main community members. Of the more than 16,000 total identified amplicon sequence variants, 25 were recognised as differentially abundant between lactating and non-lactating pouches. It is proposed that the secretion of antimicrobial peptides in the pouch act to modulate these microbial communities. This study identifies candidate bacterial clades on which to test the activity of Tasmanian devil antimicrobial peptides and their role in pouch young protection, which in turn may lead to future therapeutic development for human diseases.
Collapse
Affiliation(s)
- Lucy E Ockert
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, TAS, 7001, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH, 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
- San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA, 92112, USA.
| |
Collapse
|
5
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
6
|
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Sci Rep 2023; 13:12698. [PMID: 37542170 PMCID: PMC10403513 DOI: 10.1038/s41598-023-39901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Peel E, Cheng Y, Djordjevic JT, O’Meally D, Thomas M, Kuhn M, Sorrell TC, Huston WM, Belov K. Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLoS One 2021; 16:e0249658. [PMID: 33852625 PMCID: PMC8046226 DOI: 10.1371/journal.pone.0249658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Denis O’Meally
- Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Mark Thomas
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Michael Kuhn
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, Michigan, United States of America
| | - Tania C. Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
8
|
Stannard HJ, Miller RD, Old JM. Marsupial and monotreme milk-a review of its nutrient and immune properties. PeerJ 2020; 8:e9335. [PMID: 32612884 PMCID: PMC7319036 DOI: 10.7717/peerj.9335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023] Open
Abstract
All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and monotreme (prototherian) young are born in a highly altricial state and rely on their mother’s milk for the first part of their life. Here we review the role and importance of milk in marsupial and monotreme development. Milk is the primary source of sustenance for young marsupials and monotremes and its composition varies at different stages of development. We applied nutritional geometry techniques to a limited number of species with values available to analyze changes in macronutrient composition of milk at different stages. Macronutrient energy composition of marsupial milk varies between species and changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme milk supplies growth and immune factors. Neonates are unable to mount a specific immune response shortly after birth and therefore rely on immunoglobulins, immunological cells and other immunologically important molecules transferred through milk. Milk is also essential to the development of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian mammals. However, we have much to learn about the role of milk in marsupial and monotreme mother-young bonding. Further research is warranted in gaining a better understanding of the role of milk as a source of nutrition, developmental factors and immunity, in a broader range of marsupial species, and monotremes.
Collapse
Affiliation(s)
- Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Julie M Old
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
9
|
Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog 2020; 146:104238. [PMID: 32387392 DOI: 10.1016/j.micpath.2020.104238] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the increasing rate of antibiotic resistance in Acinetobacter, the World Health Organization introduced the carbapenem-resistant isolates in the priority pathogens list for which innovative new treatments are urgently needed. Antimicrobial peptides (AMPs) are one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs. This review aims to summarize recent advances and compare AMPs with anti-Acinetobacter baumannii activity. METHODS Active AMPs against Acinetobacter were considered, and essential features, including structure, mechanism of action, anti-A. baumannii potent, and other prominent characteristics, were investigated and compared to each other. In this regard, the Google Scholar search engine and databases of PubMed, Scopus, and Web of Science were used. RESULTS Forty-six anti-Acinetobacter peptides were identified and classified into ten groups: Cathelicidins, Defensins, Frog AMPs, Melittin, Cecropins, Mastoparan, Histatins, Dermcidins, Tachyplesins, and computationally designed AMPs. According to the Minimum Inhibitory Concentration (MIC) reports, six peptides of Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, and Mastoparan have the highest anti-A. baumannii power against sensitive and antibiotic-resistant isolates. All anti-Acinetobacter peptides except Dermcidin have a net positive charge. Most of these peptides have alpha-helical structure; however, β-sheet and other structures have been observed among them. The mechanism of action of these antimicrobial agents is divided into two categories of membrane-based and intracellular target-based attack. CONCLUSION Evidence from this review indicates that AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity could be helpful.
Collapse
Affiliation(s)
- Alireza Neshani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Cho HS, Yum J, Larivière A, Lévêque N, Le QVC, Ahn B, Jeon H, Hong K, Soundrarajan N, Kim JH, Bodet C, Park C. Opossum Cathelicidins Exhibit Antimicrobial Activity Against a Broad Spectrum of Pathogens Including West Nile Virus. Front Immunol 2020; 11:347. [PMID: 32194564 PMCID: PMC7063992 DOI: 10.3389/fimmu.2020.00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to characterize cathelicidins from the gray short-tailed opossum in silico and experimentally validate their antimicrobial effects against various pathogenic bacteria and West Nile virus (WNV). Genome-wide in silico analysis against the current genome assembly of the gray short-tailed opossum yielded 56 classical antimicrobial peptides (AMPs) from eight different families, among which 19 cathelicidins, namely ModoCath1 – 19, were analyzed in silico to predict their antimicrobial domains and three of which, ModoCath1, -5, and -6, were further experimentally evaluated for their antimicrobial activity, and were found to exhibit a wide spectrum of antimicroial effects against a panel of gram-positive and gram-negative bacterial strains. In addition, these peptides displayed low-to-moderate cytotoxicity in mammalian cells as well as stability in serum and various salt and pH conditions. Circular dichroism analysis of the spectra resulting from interactions between ModoCaths and lipopolysaccharides (LPS) showed formation of a helical structure, while a dual-dye membrane disruption assay and scanning electron microscopy analysis revealed that ModoCaths exerted bactericidal effects by causing membrane damage. Furthermore, ModoCath5 displayed potent antiviral activity against WNV by inhibiting viral replication, suggesting that opossum cathelicidins may serve as potentially novel antimicrobial endogenous substances of mammalian origin, considering their large number. Moreover, analysis of publicly available RNA-seq data revealed the expression of eight ModoCaths from five different tissues, suggesting that gray short-tailed opossums may be an interesting source of cathelicidins with diverse characteristics.
Collapse
Affiliation(s)
- Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Joori Yum
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Andy Larivière
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - ByeongYong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
11
|
Leng RA. Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present essay aims to resolve the question as to why macropod marsupials (e.g. kangaroos and wallabies, hereinafter termed ‘macropods) and horses produce much less methane (CH4) than do ruminants when digesting the same feed. In herbivores, gases produced during fermentation of fibrous feeds do not pose a major problem in regions of the gut that have mechanisms to eliminate them (e.g. eructation in the rumen and flatus in the lower bowel). In contrast, gas pressure build-up in the tubiform forestomach of macropods or in the enlarged tubiform caecum of equids would be potentially damaging. It is hypothesised that, to prevent this problem, evolution has favoured development of controls over gut microbiota that enable enteric gas production (H2 and CH4) to be differently regulated in the forestomach of macropods and the caecum of all three species, from the forestomach of ruminants. The hypothesised regulation depends on interactions between their gut anatomy and host-tissue immune responses that have evolved to modify the species composition of their gut microbiota which, importantly, are mainly in biofilms. Obligatory H2 production during forage fermentation is, thus, captured in CH4 in the ruminant where ruminal gases are readily released by eructation, or in acetate in the macropod forestomach and equid caecum–colon where a build-up in gas pressure could potentially damage these organs. So as to maintain appropriate gut microbiota in different species, it is hypothesised that blind sacs at the cranial end of the haustral anatomy of the macropod forestomach and the equid caecum are sites of release of protobiofilm particles that develop in close association with the mucosal lymphoid tissues. These tissues release immune secretions such as antimicrobial peptides, immunoglobulins, innate lymphoid cells and mucin that eliminate or suppress methanogenic Archaea and support the growth of acetogenic microbiota. The present review draws on microbiological studies of the mammalian gut as well as other microbial environments. Hypotheses are advanced to account for published findings relating to the gut anatomy of herbivores and humans, the kinetics of digesta in ruminants, macropods and equids, and also the composition of biofilm microbiota in the human gut as well as aquatic and other environments where the microbiota exist in biofilms.
Collapse
|
12
|
Peel E, Cheng Y, Djordjevic JT, Kuhn M, Sorrell T, Belov K. Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. MICROBIOLOGY-SGM 2017; 163:1457-1465. [PMID: 28949902 DOI: 10.1099/mic.0.000536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the growing demand for new antibiotics to combat increasing multi-drug resistance, a family of antimicrobial peptides known as cathelicidins has emerged as potential candidates. Expansions in cathelicidin-encoding genes in marsupials and monotremes are of specific interest as the peptides they encode have evolved to protect immunologically naive young in the harsh conditions of the pouch and burrow. Our previous work demonstrated that some marsupial and monotreme cathelicidins have broad-spectrum antibacterial activity and kill resistant bacteria, but the activity of many cathelicidins is unknown. To investigate associations between peptide antimicrobial activity and physiochemical properties, we tested 15 cathelicidin mature peptides from tammar wallaby, grey short-tailed opossum, platypus and echidna for antimicrobial activity against a range of bacterial and fungal clinical isolates. One opossum cathelicidin ModoCath4, tammar wallaby MaeuCath7 and echidna Taac-CATH1 had broad-spectrum antibacterial activity and killed methicillin-resistant Staphylococcus aureus. However, antimicrobial activity was reduced in the presence of serum or whole blood, and non-specific toxicity was observed at high concentrations. The active peptides were highly charged, potentially increasing binding to microbial surfaces, and contained amphipathic helical structures, which may facilitate membrane permeabilisation. Peptide sequence homology, net charge, amphipathicity and alpha helical content did not correlate with antimicrobial activity. However active peptides contained a significantly higher percentage of cationic residues than inactive ones, which may be used to predict active peptides in future work. Along with previous studies, our results indicate that marsupial and monotreme cathelicidins show potential for development as novel therapeutics to combat increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,UQ Genomics Initiative, The University of Queensland, St Lucia, QLD, Australia
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW, Australia
| | - Michael Kuhn
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, Michigan, USA
| | - Tania Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Cheng Y, Belov K. Antimicrobial Protection of Marsupial Pouch Young. Front Microbiol 2017; 8:354. [PMID: 28326070 PMCID: PMC5339227 DOI: 10.3389/fmicb.2017.00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/21/2017] [Indexed: 12/16/2022] Open
Abstract
Marsupials diverged from eutherian mammals about 148 million years ago and represent a unique lineage of mammals with distinctive morphological and reproductive characteristics. Marsupials have significantly shorter gestation periods than eutherians. Pregnancy typically ranges from 15 to 35 days, with young being born at a very early developmental stage and lacking differentiated lymphoid tissues and mature effector cells. Recent microbiome studies of the marsupial pouch revealed that marsupial young can face intense microbial challenges after birth, as the pouch contains a broad range of Gram-positive and Gram-negative bacteria. Antimicrobials are believed to play a significant role in the immune protection of marsupial newborns during their pouch life. The skin of the post-reproductive pouch secretes antimicrobial lysozyme and dermcidin, which may contribute to the decreased density of certain bacteria in the pouch. A range of antimicrobial agents, such as immunoglobulins, lysozyme, transferrin, and cathelicidins, have been identified in marsupial milk. Antimicrobial assays have revealed that marsupial cathelicidins have broad-spectrum activity against a variety of bacteria and fungi, including several multi-drug resistant strains. In this article, we will review the action mechanisms of these antimicrobial compounds and discuss how they protect marsupial newborns from potentially pathogenic bacteria inside the pouch. We will also discuss the potential of marsupial antimicrobial compounds as a source of novel antibiotics.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW, Australia
| |
Collapse
|
14
|
Peel E, Cheng Y, Djordjevic JT, Fox S, Sorrell TC, Belov K. Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Sci Rep 2016; 6:35019. [PMID: 27725697 PMCID: PMC5057115 DOI: 10.1038/srep35019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Tasmanian devil joeys, like other marsupials, are born at a very early stage of development, prior to the development of their adaptive immune system, yet survive in a pathogen-laden pouch and burrow. Antimicrobial peptides, called cathelicidins, which provide innate immune protection during early life, are expressed in the pouch lining, skin and milk of devil dams. These peptides are active against pathogens identified in the pouch microbiome. Of the six characterised cathelicidins, Saha-CATH5 and 6 have broad-spectrum antibacterial activity and are capable of killing problematic human pathogens including methicillin-resistant S. aureus and vancomycin-resistant E. faecalis, while Saha-CATH3 is active against fungi. Saha-CATH5 and 6 were toxic to human A549 cells at 500 μg/mL, which is over seven times the concentration required to kill pathogens. The remaining devil cathelicidins were not active against tested bacterial or fungal strains, but are widely expressed throughout the body, such as in immune tissues, in digestive, respiratory and reproductive tracts, and in the milk and pouch, which indicates that they are likely also important components of the devil immune system. Our results suggest cathelicidins play a role in protecting naive young during pouch life by passive immune transfer in the milk and may modulate pouch microbe populations to reduce potential pathogens.
Collapse
Affiliation(s)
- E Peel
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Y Cheng
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - J T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - S Fox
- Department of Primary Industries, Parks, Water and Environment, 134 Macquarie Street, Hobart, Tasmania 7000, Australia
| | - T C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - K Belov
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
16
|
Sharp JA, Modepalli V, Enjapoori AK, Bisana S, Abud HE, Lefevre C, Nicholas KR. Bioactive Functions of Milk Proteins: a Comparative Genomics Approach. J Mammary Gland Biol Neoplasia 2014; 19:289-302. [PMID: 26115887 DOI: 10.1007/s10911-015-9331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022] Open
Abstract
The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors.
Collapse
Affiliation(s)
- Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia,
| | | | | | | | | | | | | |
Collapse
|
17
|
Kuruppath S, Bisana S, Sharp JA, Lefevre C, Kumar S, Nicholas KR. Monotremes and marsupials: comparative models to better understand the function of milk. J Biosci 2013; 37:581-8. [PMID: 22922184 DOI: 10.1007/s12038-012-9247-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sanjana Kuruppath
- Centre for Biotechnology, Chemistry and Systems Biology, Deakin University, Geelong 3217 VIC, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150:12-22. [PMID: 23376548 DOI: 10.1016/j.imlet.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/09/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
In the last decades, Staphylococcus aureus acquired a dramatic relevance in human and veterinary medicine for different reasons, one of them represented by the increasing prevalence of antibiotic resistant strains. However, antibiotic resistance is not the only weapon in the arsenal of S. aureus. Indeed, these bacteria have plenty of virulence factors, including a vast ability to evade host immune defenses. The innate immune system represents the first line of defense against invading pathogens. This system consists of three major effector mechanisms: antimicrobial peptides and enzymes, the complement system and phagocytes. In this review, we focused on S. aureus virulence factors involved in the immune evasion in the first phases of infection: TLR recognition avoidance, adhesins affecting immune response and resistance to host defenses peptides and polypeptides. Studies of innate immune defenses and their role against S. aureus are important in human and veterinary medicine given the problems related to S. aureus antimicrobial resistance. Moreover, due to the pathogen ability to manipulate the immune response, these data are needed to develop efficacious vaccines or molecules against S. aureus.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Università degli Studi di Milano, Dip. Scienze Veterinarie e Sanità Pubblica, Via Celoria 10, 20133 Milano, Italy.
| | | |
Collapse
|
19
|
Edwards MJ, Hinds LA, Deane EM, Deakin JE. A review of complementary mechanisms which protect the developing marsupial pouch young. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:213-220. [PMID: 22504164 DOI: 10.1016/j.dci.2012.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Marsupials are born without a functioning adaptive immune system, into a non-sterile environment where they continue to develop. This review examines the extent of exposure of pouch young to microorganisms and describes the protective mechanisms that are complementary to adaptive immunity in the developing young. Complementary protective mechanisms include the role of the innate immune system and maternal protection strategies, such as immune compounds in milk, prenatal transfer of immunoglobulins, antimicrobial compounds secreted in the pouch, and chemical or mechanical cleaning of the pouch and pouch young.
Collapse
Affiliation(s)
- M J Edwards
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
20
|
The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives. Semin Cell Dev Biol 2012; 23:547-56. [PMID: 22498725 DOI: 10.1016/j.semcdb.2012.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/23/2022]
Abstract
The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.
Collapse
|
21
|
Abstract
Cancer is generally defined as uncontrollable growth of cells caused by genetic aberrations and/or environmental factors. Yet contagious cancers also occur. The recent emergence of a contagious cancer in Tasmanian devils has reignited interest in transmissible cancers. Two naturally occurring transmissible cancers are known: devil facial tumour disease and canine transmissible venereal tumour. Both cancers evolved once and have then been transmitted from one individual to another as clonal cell lines. The dog cancer is ancient; having evolved more than 6,000 years ago, while the devil disease was first seen in 1996. In this review I will compare and contrast the two diseases focusing on the life histories of the clonal cell lines, their evolutionary trajectories and the mechanisms by which they have achieved immune tolerance. A greater understanding of these contagious cancers will provide unique insights into the role of the immune system in shaping tumour evolution and may uncover novel approaches for treating human cancer.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
22
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|
23
|
Wang J, Wong ESW, Whitley JC, Li J, Stringer JM, Short KR, Renfree MB, Belov K, Cocks BG. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 2011; 6:e24030. [PMID: 21912615 PMCID: PMC3166071 DOI: 10.1371/journal.pone.0024030] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 07/29/2011] [Indexed: 01/08/2023] Open
Abstract
Background To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Jianghui Wang
- Biosciences Research Division, Department of Primary Industries, Bundoora, Australia
| | - Emily S. W. Wong
- Faculty of Veterinary Sciences, University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence in Kangaroo Genomics, Parkville, Australia
| | - Jane C. Whitley
- Biosciences Research Division, Department of Primary Industries, Bundoora, Australia
| | - Jian Li
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jessica M. Stringer
- Australian Research Council Centre of Excellence in Kangaroo Genomics, Parkville, Australia
- Department of Zoology, The University of Melbourne, Parkville, Australia
| | - Kirsty R. Short
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Marilyn B. Renfree
- Australian Research Council Centre of Excellence in Kangaroo Genomics, Parkville, Australia
- Department of Zoology, The University of Melbourne, Parkville, Australia
| | - Katherine Belov
- Faculty of Veterinary Sciences, University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence in Kangaroo Genomics, Parkville, Australia
- * E-mail:
| | - Benjamin G. Cocks
- Biosciences Research Division, Department of Primary Industries, Bundoora, Australia
- La Trobe University, Bundoora, Australia
| |
Collapse
|
24
|
Abstract
BACKGROUND To understand the evolutionary origins of our own immune system, we need to characterise the immune system of our distant relatives, the marsupials and monotremes. The recent sequencing of the genomes of two marsupials (opossum and tammar wallaby) and a monotreme (platypus) provides an opportunity to characterise the immune gene repertoires of these model organisms. This was required as many genes involved in immunity evolve rapidly and fail to be detected by automated gene annotation pipelines. DESCRIPTION We have developed a database of immune genes from the tammar wallaby, red-necked wallaby, northern brown bandicoot, brush-tail possum, opossum, echidna and platypus. The resource contains 2,235 newly identified sequences and 3,197 sequences which had been described previously. This comprehensive dataset was built from a variety of sources, including EST projects and expert-curated gene predictions generated through a variety of methods including chained-BLAST and sensitive HMMER searches. To facilitate systems-based research we have grouped sequences based on broad Gene Ontology categories as well as by specific functional immune groups. Sequences can be extracted by keyword, gene name, protein domain and organism name. Users can also search the database using BLAST. CONCLUSION The Immunome Database for Marsupials and Monotremes (IDMM) is a comprehensive database of all known marsupial and monotreme immune genes. It provides a single point of reference for genomic and transcriptomic datasets. Data from other marsupial and monotreme species will be added to the database as it become available. This resource will be utilized by marsupial and monotreme immunologists as well as researchers interested in the evolution of mammalian immunity.
Collapse
|
25
|
Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:431-9. [PMID: 21824524 DOI: 10.1016/j.cbpa.2011.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/25/2022]
Abstract
Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation.
Collapse
|
26
|
Edwards M, Hinds L, Deane E, Deakin J. Physical Mapping of Innate Immune Genes, Mucins and Lysozymes, and Other Non-Mucin Proteins in the Tammar Wallaby (Macropus eugenii). Cytogenet Genome Res 2011; 135:118-25. [DOI: 10.1159/000330371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2011] [Indexed: 11/19/2022] Open
|
27
|
Lu Z, Wang Y, Zhai L, Che Q, Wang H, Du S, Wang D, Feng F, Liu J, Lai R, Yu H. Novel cathelicidin-derived antimicrobial peptides from Equus asinus. FEBS J 2010; 277:2329-39. [PMID: 20423460 DOI: 10.1111/j.1742-4658.2010.07648.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, EA-CATH1 and EA-CATH2 were identified from a constructed lung cDNA library of donkey (Equus asinus) as members of cathelicidin-derived antimicrobial peptides, using a nested PCR-based cloning strategy. Composed of 25 and 26 residues, respectively, EA-CATH1 and EA-CATH2 are smaller than most other cathelicidins and have no sequence homology to other cathelicidins identified to date. Chemically synthesized EA-CATH1 exerted potent antimicrobial activity against most of the 32 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, and minimal inhibitory concentration values against Gram-positive bacteria were mostly in the range of 0.3-2.4 microg mL(-1). EA-CATH1 showed an extraordinary serum stability and no haemolytic activity against human erythrocytes in a dose up to 20 microg mL(-1). CD spectra showed that EA-CATH1 mainly adopts an alpha-helical conformation in a 50% trifluoroethanol/water solution, but a random coil in aqueous solution. Scanning electron microscope observations of Staphylococcus aureus (ATCC2592) treated with EA-CATH1 demonstrated that EA-CATH could cause rapid disruption of the bacterial membrane, and in turn lead to cell lysis. This might explain the much faster killing kinetics of EA-CATH1 than conventional antibiotics revealed by killing kinetics data. In the presence of CaCl(2), EA-CATH1 exerted haemagglutination activity, which might potentiate an inhibition against the bacterial polyprotein interaction with the host erythrocyte surface, thereby possibly restricting bacterial colonization and spread.
Collapse
Affiliation(s)
- Zekuan Lu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scocchi M, Pallavicini A, Salgaro R, Bociek K, Gennaro R. The salmonid cathelicidins: A gene family with highly varied C-terminal antimicrobial domains. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:376-81. [DOI: 10.1016/j.cbpb.2009.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 12/01/2022]
|
29
|
Joss JL, Molloy MP, Hinds L, Deane E. A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:152-161. [PMID: 18778730 DOI: 10.1016/j.dci.2008.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/18/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
The major milk whey proteins of the tammar wallaby (Macropus eugenii) have been identified over the total period of lactation using proteomic analysis techniques comprising two-dimensional electrophoresis, comparative image analysis, matrix assisted laser desorption ionisation mass spectrometry (MALDI MS), de novo peptide sequencing and cross species protein matching. Samples were collected at the periods coinciding with major milestones of immunological development in the developing marsupial and in the four phases of milk production, specifically, Days 0, 5 (Phase 1); 27, 68 (Phase 2A); 137, 174 (Phase 2B) and 250 (Phase 3). Major changes in the protein content of marsupial milk whey correlated with the changing needs of the pouch young for stages in growth and development. We have shown that the levels of milk whey proteins vary with the developmental stage of the young animal, with a high number of proteins detected in early and late milk compared with the middle phases of lactation. Over 41 proteins were confidently identified, of which most had known roles in immunological protection. Proteins providing immunological protection across the lactation period included transferrin, beta2 microglobulin, haptoglobulin and a 78kDa glucose regulated protein. Immunoglobulin IgJ linker chain and a known antimicrobial cathelicidin, were only detected for the first 100-137 days, after which time Complement B factor was found to be present (Phase 2B). The changes which correlated with development and growth in the pouch young were reflected by the presence of proteins such as an alpha-fetoprotein like protein and clusterin found in early milk (Phase 1-2A) and two unknown proteins which were apparent in very early mammary gland secretions. This is the first comprehensive proteomic study of the major whey proteins of a marsupial across the entire period of lactation and provides fundamental data on proteins secreted by the mammary gland during key stages of immunological development of the young animal.
Collapse
Affiliation(s)
- Janice L Joss
- Department of Biological Science, Division of Environmental and Life Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Abstract
The sequencing of the platypus genome has spurred investigations into the characterisation of the monotreme immune response. As the most divergent of extant mammals, the characterisation of the monotreme immune repertoire allows us to trace the evolutionary history of immunity in mammals and provide insights into the immune gene complement of ancestral mammals. The immune system of monotremes has remained largely uncharacterised due to the lack of specific immunological reagents and limited access to animals for experimentation. Early immunological studies focussed on the anatomy and physiology of the lymphoid system in the platypus. More recent molecular studies have focussed on characterisation of individual immunoglobulin, T-cell receptor and MHC genes in both the platypus and short-beaked echidna. Here, we review the published literature on the monotreme immune gene repertoire and provide new data generated from genome analysis on cytokines, Fc receptors and immunoglobulins. We present an overview of key gene families responsible for innate and adaptive immunity including the cathelicidins, defensins, T-cell receptors and the major histocompatibility complex (MHC) Class I and Class II antigens. We comment on the usefulness of these sequences for future studies into immunity, health and disease in monotremes.
Collapse
|
31
|
Whittington CM, Sharp JA, Papenfuss A, Belov K. No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk. AUST J ZOOL 2009. [DOI: 10.1071/zo09047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Marsupial neonates are born without a fully functioning immune system, and are known to be protected in part by natural antimicrobial peptides present in their mother’s milk. Monotreme neonates hatch at a similar stage in development, and it has been hypothesised that their survival in a non-sterile burrow also relies on the presence of natural antibiotics in their mother’s milk. Here we review the field of monotreme lactation and the antimicrobial peptide complement of the platypus (Ornithorhynchus anatinus). Using reverse transcriptase–polymerase chain reaction of milk cell RNA from a sample of platypus milk, we found no evidence for the expression of cathelicidins or defensins in the milk. This was unexpected. We hypothesise that these natural antibiotics may instead be produced by the young platypuses themselves.
Collapse
|
32
|
Daly KA, Mailer SL, Digby MR, Lefévre C, Thomson P, Deane E, Nicholas KR, Williamson P. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid. Vet Immunol Immunopathol 2008; 129:36-48. [PMID: 19157568 DOI: 10.1016/j.vetimm.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 01/22/2023]
Abstract
The immunological function of the metatherian mammary gland plays a crucial part in neonatal survival of the marsupial young. Marsupial pouch young do not develop adult like immune responses until just prior to leaving the pouch. The immune components of the maternal milk secretions are important during this vulnerable early post-partum period. In addition, infection of the mammary gland has not been recognized in metatherians, despite the ready availability of pathogens in the pouch. Regardless of which, little is known about the immunobiology of the mammary gland and the immune responses of mammary epithelial cells in metatherians. In this study, a molecular approach was utilized to examine the response of tammar (Macropus eugenii) mammary epithelial cells to Escherichia coli derived lipopolysaccharide (LPS) and Staphylococcus aureus derived lipoteichoic acid (LTA). Using custom-made cDNA microarrays, candidate genes were identified in the transciptome, which were involved in antigen presentation, inflammation, cell growth and proliferation, cellular damage and apoptosis. Quantification of mRNA expression of several of these candidate genes, along with seven other genes (TLR4, CD14, TNF-alpha, cathelicidin, PRDX1, IL-5 and ABCG2) associated with innate immunity in LPS and LTA challenged mammary epithelial cells and leukocytes, was assessed for up to 24 h. Differences in genes associated with cellular damage and pro-inflammatory cytokine production were seen between stimulated mammary epithelial cells and leukocytes. LTA challenge tended to result in lower level induction of pro-inflammatory cytokines, increased PRDX1 mRNA levels, suggesting increased oxidative stress, and increased CD14 expression, but in a non-TLR4-dependent manner. The use of functional genomic tools in the tammar identified differences in the response of tammar mammary epithelial cells (MEC) and leukocytes to challenge with LPS and LTA, and validates the utility of the approach. The results of this study are consistent with a model in which tammar mammary epithelial cells have the capacity to elicit a complex and robust immune response to pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Faculty of Veterinary Science, B19, University of Sydney, Camperdown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Carman RL, Old JM, Baker M, Jacques NA, Deane EM. Identification and expression of a novel marsupial cathelicidin from the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol 2008; 127:269-76. [PMID: 19046773 DOI: 10.1016/j.vetimm.2008.10.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/13/2008] [Accepted: 10/16/2008] [Indexed: 11/28/2022]
Abstract
Cathelicidins are important components of the innate immune system and have been identified in skin and epithelia of a range of mammals. In this study molecular techniques, including RACE-PCR, were used to identify the full cDNA sequence of a cathelicidin gene, MaeuCath8, from the Australian marsupial, the tammar wallaby, Macropus eugenii. This cathelicidin was not homologous to other such genes previously isolated from a tammar wallaby mammary gland EST library, however, it did contain 4 conserved cysteine residues which characterise the pre-propeptide and had 80% identity with a previously isolated bandicoot cathelicidin. Reverse transcriptase-PCR established the expression profile of MaeuCath8 in a range of tissues, including spleen, thymus, gastrointestinal tract, skin and liver, of the tammar wallaby from birth to adulthood. Expression of MaeuCath8 was observed in spleen and gastrointestinal tract of newborn animals and was observed in most tissues by 7 days post-partum. The results indicate that pouch young could synthesize their own antimicrobial peptides from an early age suggesting that this ability most likely plays a role in protecting the pouch young from infection prior to the development of immunocompetence.
Collapse
Affiliation(s)
- Rebecca L Carman
- Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, NSW, Australia
| | | | | | | | | |
Collapse
|
34
|
Carman RL, Simonian MR, Old JM, Jacques NA, Deane EM. Immunohistochemistry using antibodies to the cathelicidin LL37/hCAP18 in the tammar wallaby, Macropus eugenii. Tissue Cell 2008; 40:459-66. [PMID: 18597803 DOI: 10.1016/j.tice.2008.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/21/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
Abstract
Antibodies to the human cathelicidin, hCAP18 have been used to examine epithelial tissues of adult and pouch young marsupials. Immunoreactivity was observed in skin, gastrointestinal tract, lung and mammary node of adults as well as skin, gastrointestinal tract, lung and bone marrow of pouch young. The locations of expression were similar to that reported in human tissues. Although the antibody to hCAP18 is primarily directed at the C-terminal antimicrobial peptide LL37, our observations suggest recognition of a common conserved element of this cathelicidin and lead us to conclude that the epithelial tissues of marsupials are sites of production of cathelicidin. This is consistent with observations in other mammals but is the first report of expression of these compounds in marsupials.
Collapse
Affiliation(s)
- Rebecca L Carman
- Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, NSW, Australia
| | | | | | | | | |
Collapse
|
35
|
Daly KA, Lefévre C, Nicholas K, Deane E, Williamson P. CD14 and TLR4 are expressed early in tammar (Macropus eugenii) neonate development. ACTA ACUST UNITED AC 2008; 211:1344-51. [PMID: 18375859 DOI: 10.1242/jeb.012013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|