1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Yu X, Zhang M, Liu P, Li J, Gao B, Meng X. The miRNAs let-7b and miR-141 Coordinately Regulate Vitellogenesis by Modulating Methyl Farnesoate Degradation in the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2023; 25:279. [PMID: 38203450 PMCID: PMC10778691 DOI: 10.3390/ijms25010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.
Collapse
Affiliation(s)
- Xuee Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Mengqian Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Cao Z, Chen C, Wang C, Li T, Chang L, Si L, Yan D. Enterocytozoon hepatopenaei (EHP) Infection Alters the Metabolic Processes and Induces Oxidative Stress in Penaeus vannamei. Animals (Basel) 2023; 13:3661. [PMID: 38067012 PMCID: PMC10705197 DOI: 10.3390/ani13233661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 09/10/2024] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is highly contagious and can cause hepatopancreatic microsporidiosis (HPM), which is typically characterized by the slow growth of shrimp. In this study, the differences in histology, metabolism, oxidative stress and growth between healthy and EHP-infected Penaeus vannamei were analyzed using an EHP challenge experiment. Histology showed that EHP caused lesions in the hepatic tubules of P. vannamei, such as hepatic tubular atrophy and epithelial cell shedding, with mature spores. Meanwhile, white feces may appear when the infection is severe. Furthermore, the content of total protein, glycogen, ATP and glucose in the EHP challenge group was significantly reduced. The qPCR results showed that EHP infection changed the expression of key genes in glucose metabolism, among which hexokinase (HK), phosphofructokinase (PFK), pyruvatekinase (PK), citrate synthase (CS) and isocitric dehydrogenase (IDH) were significantly down-regulated, while phosphoenolpyruvate carboxykinase (PEPCK), fructose bisphosphatase (FBP) and glucose-6-phosphatase (G6P) were significantly up-regulated. Obviously, the expression of growth-related genes was disordered. Simultaneously, the antioxidant genes manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferases (GST) and nuclear factor E2-related factor2 (Nrf2) were up-regulated to varying degrees in the EHP challenge group, and EHP infection induced significant increases in the oxidative damage products lipid peroxide (LPO) and malondialdehyde (MDA). Ultimately, the shrimp weight of the challenge group was 6.85 ± 0.86 g, which was significantly lower than that of the control group (8.95 ± 0.75 g). Taken together, we speculate that EHP changes the substance metabolism and growth process by causing oxidative damage to the hepatopancreas, which may lead to the growth retardation of P. vannamei.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingjun Si
- Laboratory of Disease Research of Aquatic Animal, School of Agriculture, Ludong University, Yantai 264025, China; (Z.C.); (C.C.); (C.W.); (T.L.); (L.C.)
| | - Dongchun Yan
- Laboratory of Disease Research of Aquatic Animal, School of Agriculture, Ludong University, Yantai 264025, China; (Z.C.); (C.C.); (C.W.); (T.L.); (L.C.)
| |
Collapse
|
4
|
Chen T, Diao Y, Xu R, Sheng N, Liu F, Xie Q, Su S, Ma K, Li X. Cloning and expression analysis of juvenile hormone epoxide hydrolase-like ( EsJHEH-like) from Eriocheir sinensis, and its potential roles in methyl farnesoate metabolism. INVERTEBR REPROD DEV 2022. [DOI: 10.1080/07924259.2021.2019843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yingzhu Diao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Na Sheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Keyi Ma
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Li X, Chen T, Xu R, Huang M, Huang J, Xie Q, Liu F, Su S, Ma K. Identification, characterization and mRNA transcript abundance profiles of the carboxylesterase (CXE5) gene in Eriocheir sinensis suggest that it may play a role in methyl farnesoate degradation. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110630. [PMID: 34062270 DOI: 10.1016/j.cbpb.2021.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The sesquiterpenoid methyl farnesoate (MF) is a de-epoxidized form of insect juvenile hormone (JH) III in crustaceans, and its precise titer plays important roles in regulating many critical physiological processes, including reproduction and ovarian maturation. Understanding the synthetic and degradation pathways of MF is equally important for determining how to maintain MF titers at appropriate levels and thus for potential applications in crab aquaculture. Although the synthetic pathway of MF has been well established, little is known about MF degradation. Previous research proposed that specific carboxylesterases (CXEs) that degrade MF in crustaceans are conserved from those of JH III. In this study, we identified a novel Es-CXE5 gene from Eriocheir sinensis. The Es-CXE5 protein contains some conserved motifs, including catalytic triad and oxyanion hole, which are characteristics of the biologically active CXE family. The phylogenetic analysis showed that Es-CXE5 belongs to the hormone/semiochemical processing group of the CXE family. Moreover, Tissue and stage-specific expression results suggested that Es-CXE5 expression in hepatopancreas was highest and associated with the hemolymph MF titer. Furthermore, Es-CXE5 mRNA transcripts were detected in both in vitro and in vivo experiments and ESA experiment in the hepatopancreas and ovary. The results of this study showed that Es-CXE5 mRNA abundance in the hepatopancreas was notably induced by MF addition but had no effect on the ovary. Taken together, our results suggest that Es-CXE5 may degrade MF in the hepatopancreas and may thus be involved in ovarian development in E. sinensis.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Keyi Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
6
|
Lou F, Gao T, Han Z. Identification of putative key genes for thermal adaptation in the Japanese mantis shrimp (Oratosquilla oratoria) through population genomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100828. [PMID: 33838619 DOI: 10.1016/j.cbd.2021.100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Little is known about the mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different habitat temperature. Here, the genome-wide genetic information of three O. oratoria populations were obtained by IIB restriction site-associated DNA (2b-RAD) sequencing and 2403 single-nucleotide polymorphisms (SNPs) were identified. Based on the 2403 SNPs, we found a remarkable genetic differentiation between the Yellow Sea and the East China Sea groups of O. oratoria. Furthermore, 63 SNPs are thought to be associated with different sea temperatures. Based on the 63 SNPs, it is hypothesised that the long-term temperature differences may contribute to the variation of genes associated with multiple biological functions, such as material metabolism, cytoskeleton, cellular processes, inflammatory response and hormonal regulation. This study provides new information for elucidating the molecular mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different temperature.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
7
|
Solé M, Freitas R, Rivera-Ingraham G. The use of an in vitro approach to assess marine invertebrate carboxylesterase responses to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103561. [PMID: 33307128 DOI: 10.1016/j.etap.2020.103561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CEs) are key enzymes which catalyse the hydrolysis reactions of multiple xenobiotics and endogenous ester moieties. Given their growing interest in the context of marine pollution and biomonitoring, this study focused on the in vitro sensitivity of marine invertebrate CEs to some pesticides, pharmaceuticals, personal care products and plastic additives to assess their potential interaction on this enzymatic system and its suitability as biomarkers. Three bivalves, one gastropod and two crustaceans were used and CEs were quantified following current protocols set for mammalian models. Four substrates were screened for CEs determination and to test their adequacy in the hepatic fraction measures of the selected invertebrates. Two commercial recombinant human isoforms (hCE1 and hCE2) were also included for methodological validation. Among the invertebrates, mussels were revealed as the most sensitive to xenobiotic exposures while gastropods were the least as well as with particular substrate-specific preferences. Among chemicals of environmental concern, the plastic additive tetrabromobisphenol A displayed the highest CE-inhibitory capacity in all species. Since plastic additives easily breakdown from the polymer and may accumulate and metabolise in marine biota, their interaction with the CE key metabolic/detoxification processes may have consequences in invertebrate's physiology, affect bioaccumulation and therefore trophic web transfer and, ultimately, human health as shellfish consumers.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Georgina Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| |
Collapse
|
8
|
Neuparth T, Machado AM, Montes R, Rodil R, Barros S, Alves N, Ruivo R, Castro LFC, Quintana JB, Santos MM. Transgenerational inheritance of chemical-induced signature: A case study with simvastatin. ENVIRONMENT INTERNATIONAL 2020; 144:106020. [PMID: 32861161 DOI: 10.1016/j.envint.2020.106020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The hypothesis that exposure to certain environmental chemicals during early life stages may disrupt reproduction across multiple non-exposed generations has significant implications for understanding disease etiology and adverse outcomes. We demonstrate here reproductive multi and transgenerational effects, at environmentally relevant levels, of one of the most prescribed human pharmaceuticals, simvastatin, in a keystone species, the amphipod Gammarus locusta. The transgenerational findings has major implications for hazard and risk assessment of pharmaceuticals and other contaminants of emerging concern given that transgenerational effects of environmental chemicals are not addressed in current hazard and risk assessment schemes. Considering that the mevalonate synthesis, one of the key metabolic pathways targeted by simvastatin, is highly conserved among metazoans, these results may also shed light on the potential transgenerational effects of simvastatin on other animals, including humans.
Collapse
Affiliation(s)
- T Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - A M Machado
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - N Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - R Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Zhang X, Yuan J, Zhang X, Xiang J, Li F. Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei. Int J Mol Sci 2020; 21:ijms21155444. [PMID: 32751646 PMCID: PMC7432913 DOI: 10.3390/ijms21155444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
The sesquiterpenoid methyl farnesoate (MF), a juvenile hormone (JH) analog, plays important roles in many physiological processes of crustaceans, such as morphogenesis, molting and reproduction. Juvenile hormone esterase-like (JHE-like) carboxylesterase (CXE) is a key enzyme in MF degradation, playing a significant role in regulating MF titer. However, its function is barely known in shrimp. In this study, a total of 21 JHE-like CXEs (LvCXEs) were characterized in Pacific white shrimp Litopenaeus vannamei, based on the full genome and multi-transcriptomic data. LvCXE has a conserved triplet catalytic site (Ser-Glu-His) and a characteristic GxSxG motif. Most LvCXEs were highly expressed in the hepatopancreas, which was the main site for MF degradation. LvCXEs containing a GESAG motif showed a specific expansion in the L. vannamei genome. Those GESAG-containing LvCXEs presented differential expressions at different larvae stages and different molting stages of L. vannamei, which suggested their potential functions in development and molting. Additionally, when the transcription level of CXEs was inhibited, it could lead to failed molt and death of L. vannamei. When we further detected the expression levels of the key ecdysone responsive transcription factors including LvE75, LvBr-C, LvHr3 and LvFtz-f1 after the CXE inhibitor was injected into L. vannamei, they all showed apparent down-regulation. These results suggested that the expansion of LvCXEs in the L. vannamei genome should contribute to the regulation of metamorphosis at larvae stages and frequent molting during the growth of L. vannamei.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.Y.); (X.Z.)
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.Y.); (X.Z.)
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
10
|
Wei C, Pan L, Zhang X, Xu L, Si L, Tong R, Wang H. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine. FISH & SHELLFISH IMMUNOLOGY 2019; 94:497-509. [PMID: 31541775 DOI: 10.1016/j.fsi.2019.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
As a crucial neuroendocrine-immune factor, dopamine (DA) could regulate the immune system of Litopenaeus vannamei. To understand the immune mechanisms and regulatory pathways of DA in L. vannamei, the transcriptome analysis of hemocytes of L. vannamei with injection of DA (10-6 mol/shrimp) at 3 and 12 h were performed in this study. Moreover, quantitative real-time PCR (qPCR) method was applied to validate the accuracy of transcriptome sequencing and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, 12, and 24 h) after DA injection. The results showed that a total of 51382 unigenes with a N50 length of 2341 bp were generated. And 1397 and 457 DEGs were obtained by comparative transcriptome at 3 and 12h respectively. Moreover, the results of functional annotation and enriched pathway showed that the DEGs were involved in phagosome (ko04145), lysosome (ko04142), Endocytosis (ko04144), and NOD-like receptor signaling pathway (ko04621). Besides, the Pearson's correlation coefficient (R) between transcriptome sequencing and qPCR was 0.845, which confirmed the reliability of the transcriptome sequencing results and the accuracy of assembly. Furthermore, the expression pattern of 15 candidate DEGs, containing 9 up-regulated and 6 down-regulated DEGs at 3 h, indicated the regulation of DA in physiological functions especially in the immune system. Therefore, these results revealed that DA induced the expressions of membrane receptors or proteins, activated intracellular signaling pathways, regulated cellular and humoral immune systems, controlled antioxidation and apoptosis, and was involved in the regulation of neuroendocrine system. These findings are helpful to promote the understanding on the effects of biogenic amines on physiological functions and regulatory networks of crustacean, and offer a substantial material and foundation for researching the immune response of crustacean.
Collapse
Affiliation(s)
- Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lijun Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
11
|
Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W, Wang L, Meng Q. Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:534-545. [PMID: 30721776 DOI: 10.1016/j.fsi.2019.01.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.
Collapse
Affiliation(s)
- Mingxiao Ning
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Shen
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Mingjian Jin
- Rudong Center for Control and Prevention of Aquatic Animal Infectious Disease, 25# Changjiang Road, Rudong, 226400, China
| | - Xiangqian Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hao Shi
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yi Qiao
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Ge Jiang
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
12
|
Zhu XJ, Xiong Y, He W, Jin Y, Qian YQ, Liu J, Dai ZM. Molecular cloning and expression analysis of a prawn (Macrobrachium rosenbergii) juvenile hormone esterase-like carboxylesterase following immune challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 80:10-14. [PMID: 29803663 DOI: 10.1016/j.fsi.2018.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Methyl farnesoate (MF), the crustacean juvenile hormone (JH), plays critical roles in various physiological processes in crustaceans. The titer of MF is precisely regulated by specific carboxylesterase. Here, we report for the first time that the cloning and expression analysis of a JH esterase-like carboxylesterase from the prawn Macrobrachium rosenbergii (named as MrCXE). MrCXE contained a 1935-bp open reading frame (ORF) conceptually translated into a 644-amino acids protein. MrCXE protein shared the highest identity (36%) with JH esterase-like carboxylesterase from the swimming crab, Portunus trituberculatus and exhibited the typical motifs of JH esterase-like carboxylesterases. MrCXE was most abundantly expressed in hepatopancreas, the major tissue for MF metabolism. MrCXE was expressed at a low level in gut and was not detected in other tissues. Additionally, MrCXE expression was upregulated in hepatopancreas by eyestalk ablation to increase MF level. Furthermore, the mRNA level of MrCXE was significantly increased in the hepatopancreas when challenged by the bacterial pathogens Aeromonas hydrophila and Vibrio parahaemolyticus. To our knowledge, this is the first report that the JH esterase-like carboxylesterase is involved in the innate immune response of the crustaceans.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yanan Xiong
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Weiran He
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yuting Jin
- College of Life Sciences, China Jiliang University, 310018, Hangzhou, Zhejiang, China
| | - Ye-Qing Qian
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Jun Liu
- College of Life Sciences, China Jiliang University, 310018, Hangzhou, Zhejiang, China.
| | - Zhong-Min Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Wang G, Liu H, Wei Z, Jia H, Liu Y, Liu J. Systematic analysis of the molecular mechanism of microRNA-124 in hepatoblastoma cells. Oncol Lett 2018; 14:7161-7170. [PMID: 29344147 PMCID: PMC5754889 DOI: 10.3892/ol.2017.7131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to identify the molecular mechanisms of microRNA-124 (miRNA-124/miR-124) in hepatoblastoma. The GSE6207 microarray dataset, obtained from the Gene Expression Omnibus database, included samples extracted from HepG2 cells transfected with miR-124 duplex (the experimental group) or negative control (the control group) at 4, 8, 16, 24, 32, 72 and 120 h after transfection. Differentially expressed genes (DEGs) were screened between the two groups. miR-124 activity was inferred based on the expression of its target genes. The mRNAs targeted by miR-124 were predicted and a miR-124-target mRNA network was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the target genes. The number of DEGs was highest at 72 h. The experimental group had higher miR-124 activity than that of the control group at 4, 8, 16, 24 and 120 h. Small GTPase-mediated signal transduction and Ras protein signal transduction were significant GO terms enriched with syndecan binding protein (SDCBP), Ras homolog family member G (RHOG) and Rho-GDP dissociation inhibitor-α (ARHGDIA). Regulation of actin cytoskeleton, D-glutamine and D-glutamate metabolism, and axon guidance were significant pathways. Axon guidance pathway was associated with neuropilin (NRP1), MET proto-oncogene, receptor tyrosine kinase (MET) and semaphorin 7A, GPI membrane anchor (SEMA7A). Small GTPase-mediated signal transduction, Ras protein signal transduction, regulation of actin cytoskeleton pathway, D-glutamine and D-glutamate metabolism pathway, axon guidance pathway, SDCBP, RHOG, ARHGDIA, NRP1, SEMA7A, and MET may be implicated in the underlying mechanisms of miR-124 overexpression in hepatoblastoma.
Collapse
Affiliation(s)
- Guiming Wang
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hong Liu
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhigang Wei
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongyan Jia
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Liu
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiansheng Liu
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
14
|
Gouveia D, Chaumot A, Charnot A, Almunia C, François A, Navarro L, Armengaud J, Salvador A, Geffard O. Ecotoxico-Proteomics for Aquatic Environmental Monitoring: First in Situ Application of a New Proteomics-Based Multibiomarker Assay Using Caged Amphipods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13417-13426. [PMID: 29068690 DOI: 10.1021/acs.est.7b03736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a proof of principle, a selected reaction monitoring (SRM) mass spectrometry-based methodology was applied to the simultaneous quantification of dozens of protein biomarkers in caged amphipods (Gammarus fossarum). We evaluated the suitability of the methodology to assess complex field contaminations through its application in the framework of a regional river monitoring network. Thanks to the high throughput acquisition of biomarker levels in G. fossarum exposed in four reference and 13 contaminated sites, we analyzed the individual responses of 38 peptides reporting for 25 proteins of interest in 170 organisms. Responses obtained in contaminated sites included inductions of vitellogenin-like proteins in male organisms, inductions of Na+K+/ATPases, and strong inhibitions of molt-related proteins such as chitinase and JHE-carboxylesterase. Proteins from detoxification and immunity processes were also found modulated in abundance. Summarizing, the results presented here show that the SRM strategy developed for multibiomarker measurement paves a very promising way to define multiple indicators of the health status of sentinel organisms for environmental hazard assessment.
Collapse
Affiliation(s)
- Duarte Gouveia
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Arnaud Chaumot
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| | - Aurore Charnot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Christine Almunia
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Adeline François
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| | - Lionel Navarro
- Agence De L'Eau Rhone Mediterranée Corse , F-69363 Lyon, France
| | - Jean Armengaud
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Arnaud Salvador
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Olivier Geffard
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| |
Collapse
|
15
|
Lee JH, Suryaningtyas IT, Yoon TH, Shim JM, Park H, Kim HW. Transcriptomic analysis of the hepatopancreas induced by eyestalk ablation in shrimp, Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:99-110. [PMID: 28915415 DOI: 10.1016/j.cbd.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022]
Abstract
Although eyestalk ablation (ESA) is currently considered the most effective method to facilitate molting and maturation, its physiological responses are still not clearly explained in decapod crustaceans. In this study, we analyzed the hepatopancreatic transcriptomes of Litopenaeus vannamei after ESA using the Illumina Miseq platform. After screening 53,029 contigs with high cutoff values (fold change>|10|; P-value<0.05; RPKM>1), we were able to identify 105 differentially expressed genes (DEGs), of which 100 were up-regulated and five were down-regulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many DEGs were involved in the synthetic pathways for glycerol and trehalose, which are known to function as the major protectants under conditions of low temperature and osmotic stress in arthropods. Additional analysis of the other DEGs enabled us to classify them in four categories: immunity; cellular trafficking; transcriptional regulation; molting and maturation. Many DEGs were involved in immunity and stress responses, in particular the proPO activation system, which is the major immune and wound-healing system in arthropods. In addition to immunity and stress responses, we were also able to identify DEGs involved in molting and maturation processes (e.g., group I chitinase), as well as those involved in hormone metabolism and trafficking. Collectively, based on the transcriptomic analysis, ESA causes not only stress and immune responses, but also molting and maturation in L. vannamei. The DEGs identified in this study could be useful markers to understand the physiological responses that ESA induces in shrimp, such as molting, maturation, and immunity.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | | | - Tae-Ho Yoon
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jeong Min Shim
- East Sea Fisheries Research Institute, National Institute of Fisheries Research, Gangneung 46083, Republic of Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, Republic of Korea
| | - Hyun-Woo Kim
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
16
|
Gouveia D, Chaumot A, Charnot A, Queau H, Armengaud J, Almunia C, Salvador A, Geffard O. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:199-209. [PMID: 28750222 DOI: 10.1016/j.aquatox.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Recently, a protein sequence database was built specifically for the sentinel non-model species Gammarus fossarum using a proteogenomics approach. A quantitative multiplexed targeted proteomics assay (using Selected Reaction Monitoring mass spectrometry) was then developed for a fast and simultaneous quantification of dozens of biomarker peptides specific of this freshwater sentinel crustacean species. In order to assess the relevance of this breakthrough methodology in ecotoxicology, the response patterns of a panel of 26 peptides reporting for 20 proteins from the Gammarus fossarum proteome with putative key functional roles (homeostasis, osmoregulation, nutrition, reproduction, molting,…) were recorded through male and female reproductive cycles and after exposure to environmental concentrations of cadmium and lead in laboratory-controlled conditions. Based on these results, we validated the implication of annotated vtg-like peptides in the oogenesis process, and the implication of Na+/K+ ATPase proteins in the molt cycle of organisms. Upon metal (cadmium and lead) contamination, peptides belonging to proteins annotated as involved in antioxidant and detoxification functions, immunity and molting were significantly down-regulated. Overall, this multiplex assay allowed gaining relevant insights upon disruption of different main functions in the sentinel species Gammarus fossarum. This breakthrough methodology in ecotoxicology offers a valid and high throughput alternative to currently used protocols, paving the way for future practical applications of proteogenomics-derived protein biomarkers in chemical risk assessment and environmental monitoring.
Collapse
Affiliation(s)
- D Gouveia
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France; CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Chaumot
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - A Charnot
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - H Queau
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - J Armengaud
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - C Almunia
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Salvador
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - O Geffard
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| |
Collapse
|
17
|
Zhu L, Yin TY, Sun D, Liu W, Zhu F, Lei CL, Wang XP. Juvenile hormone regulates the differential expression of putative juvenile hormone esterases via methoprene-tolerant in non-diapause-destined and diapause-destined adult female beetle. Gene 2017; 627:373-378. [PMID: 28679117 DOI: 10.1016/j.gene.2017.06.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/06/2023]
Abstract
Juvenile hormone (JH) plays an essential role in regulating molting, metamorphosis, reproduction, and diapause (dormancy), in many insects and crustaceans. JH esterases (JHEs) can control JH titer by regulating JH degradation. Although the biochemistry and structure of JHEs have been well studied, regulation of their expression remains unclear. We identified three putative JHEs (JHE1, JHE2, JHE3) in the cabbage beetle Colaphellus bowringi, and investigated the regulation of their expression by JH signaling in non-diapause-destined (NDD, reproductive) and diapause-destined (DD) female adults. Sequence and phylogenetic tree analyses indicate that the three putative JHEs shared conserved motifs with the JHEs of other insects and one crustacean, and were similar to Coleopteran, Dipteran, Orthopteran, Hymenopteran, and Decapodan JHEs. They were, however, less closely related to Hemipteran and Lepidopteran JHEs. JHEs were more highly expressed in NDD female adults than in DD female adults. JH analog induction in DD female adults significantly upregulated the expression of JHE1 and JHE2, but had no effect on the expression of JHE3. Knockdown of the JH candidate receptor methoprene-tolerant (Met) in NDD female adults downregulated the expression of all three JHEs. These results suggest that JHE expression is positively correlated with JH signaling, and that Met may be involved in the JH-mediated differential expression of JHE in DD and NDD adult female C. bowringi.
Collapse
Affiliation(s)
- Li Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tian-Yan Yin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dan Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
18
|
Ventura-López C, Galindo-Torres PE, Arcos FG, Galindo-Sánchez C, Racotta IS, Escobedo-Fregoso C, Llera-Herrera R, Ibarra AM. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process. Gen Comp Endocrinol 2017; 246:164-182. [PMID: 27964922 DOI: 10.1016/j.ygcen.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/27/2022]
Abstract
The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Pavel E Galindo-Torres
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Fabiola G Arcos
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Clara Galindo-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Cristina Escobedo-Fregoso
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - Raúl Llera-Herrera
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos s/n. Estero del Yugo, Mazatlán, Sinaloa 82000, Mexico.
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| |
Collapse
|
19
|
Xu Y, Zhao M, Deng Y, Yang Y, Li X, Lu Q, Ge J, Pan J, Xu Z. Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:46-53. [DOI: 10.1016/j.cbpb.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
|
20
|
Cloning of two carboxylesterase cDNAs from the swimming crab Portunus trituberculatus: Molecular evidences for their putative roles in methyl farnesotae degradation. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:100-107. [DOI: 10.1016/j.cbpb.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022]
|
21
|
Kim AR, Alam MJ, Yoon TH, Lee SR, Park H, Kim DN, An DH, Lee JB, Lee CI, Kim HW. Molecular characterization of an adiponectin receptor homolog in the white leg shrimp, Litopenaeus vannamei. PeerJ 2016; 4:e2221. [PMID: 27478708 PMCID: PMC4950565 DOI: 10.7717/peerj.2221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/15/2016] [Indexed: 12/02/2022] Open
Abstract
Adiponectin (AdipoQ) and its receptors (AdipoRs) are strongly related to growth and development of skeletal muscle, as well as glucose and lipid metabolism in vertebrates. Herein we report the identification of the first full-length cDNA encoding an AdipoR homolog (Liv-AdipoR) from the decapod crustacean Litopenaeus vannamei using a combination of next generation sequencing (NGS) technology and bioinformatics analysis. The full-length Liv-AdipoR (1,245 bp) encoded a protein that exhibited the canonical seven transmembrane domains (7TMs) and the inversed topology that characterize members of the progestin and adipoQ receptor (PAQR) family. Based on the obtained sequence information, only a single orthologous AdipoR gene appears to exist in arthropods, whereas two paralogs, AdipoR1 and AdipoR2, have evolved in vertebrates. Transcriptional analysis suggested that the single Liv-AdipoR gene appears to serve the functions of two mammalian AdipoRs. At 72 h after injection of 50 pmol Liv-AdipoR dsRNA (340 bp) into L. vannamei thoracic muscle and deep abdominal muscle, transcription levels of Liv-AdipoR decreased by 93% and 97%, respectively. This confirmed optimal conditions for RNAi of Liv-AdipoR. Knockdown of Liv-AdipoR resulted in significant changes in the plasma levels of ammonia, 3-methylhistine, and ornithine, but not plasma glucose, suggesting that that Liv-AdipoR is important for maintaining muscle fibers. The chronic effect of Liv-AdipoR dsRNA injection was increased mortality. Transcriptomic analysis showed that 804 contigs were upregulated and 212 contigs were downregulated by the knockdown of Liv-AdipoR in deep abdominal muscle. The significantly upregulated genes were categorized as four main functional groups: RNA-editing and transcriptional regulators, molecular chaperones, metabolic regulators, and channel proteins.
Collapse
Affiliation(s)
- Ah Ran Kim
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Md Jobaidul Alam
- Department of Marine Biology, Pukyong National University , Busan , South Korea
| | - Tae-Ho Yoon
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Soo Rin Lee
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute , Incheon , Republic of Korea
| | - Doo-Nam Kim
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Doo-Hae An
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Jae-Bong Lee
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Chung Il Lee
- Department of Marine Bioscience, Gangneung-Wonju National University , Gangneung , Republic of Korea
| | - Hyun-Woo Kim
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University, Busan, South Korea; Department of Marine Biology, Pukyong National University, Busan, South Korea
| |
Collapse
|
22
|
Legrand E, Forget-Leray J, Duflot A, Olivier S, Thomé JP, Danger JM, Boulangé-Lecomte C. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:64-75. [PMID: 27111276 DOI: 10.1016/j.aquatox.2016.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/19/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers.
Collapse
Affiliation(s)
- Eléna Legrand
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Joëlle Forget-Leray
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Aurélie Duflot
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Stéphanie Olivier
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre for Analytical Research and Technology (CART), 4000 SART-Tilman, Belgium.
| | - Jean-Michel Danger
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Céline Boulangé-Lecomte
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| |
Collapse
|
23
|
Lee SR, Lee JH, Kim AR, Kim S, Park H, Baek HJ, Kim HW. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: Cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones. Comp Biochem Physiol B Biochem Mol Biol 2016; 192:38-48. [DOI: 10.1016/j.cbpb.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
24
|
Kim GR, Yoon TH, Park WG, Park JY, Kang JH, Kim HW. Five nicotinic acetylcholine receptor subunits from the Morotoge shrimp,Pandalopsis japonica: cloning, tissue distribution, and functional expression inXenopusoocytes. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1109547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Olsvik PA, Samuelsen OB, Agnalt AL, Lunestad BT. Transcriptional responses to teflubenzuron exposure in European lobster (Homarus gammarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:143-156. [PMID: 26318677 DOI: 10.1016/j.aquatox.2015.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Increasing use of pharmaceutical drugs to delouse farmed salmon raises environmental concerns. This study describes an experiment carried out to elucidate the molecular mechanisms of the antiparasitic drug teflubenzuron on a non-target species, the European lobster. Juvenile lobsters (10.3±0.9 mm carapace length) were fed two environmentally relevant doses of teflubenzuron, corresponding to 5 and 20% of a standard salmon medication (10 mg/kg day), termed low and high dose in this study. After 114 days of dietary exposure, whole-animal accumulation of teflubenzuron was determined. One claw from each animal was collected for transcriptional analysis. Overall, exposed animals showed low cumulative mortality. Six animals, two from the low dose treatment and four from the high dose, showed exoskeletal abnormalities (claw deformities or stiff walking legs). Residual levels of teflubenzuron in juvenile lobster were 2.7-fold higher in the high dose (282 ng/g) compared to the low dose treatment (103 ng/g). The transcriptional examination showed significant effects of teflubenzuron on 21 out of 39 studied genes. At the transcriptional level, environmentally relevant levels of the anti-salmon lice drug impacted genes linked to drug detoxification (cyp3a, cyp6a2, cyp302a, sult1b1, abcc4), cellular stress (hsp70, hsp90, chh), oxidative stress (cat, gpx3) and DNA damage (p53), as well as molting and exoskeleton regulation (chi3l1, ecr, jhl1, chs1, ctbs, gap65, jhel-ces1) in claw tissue (muscle and exoskeleton). In conclusion, teflubenzuron at sub-lethal levels can affect many molecular mechanisms in European lobster claws.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005 Bergen, Norway.
| | - Ole B Samuelsen
- Institute of Marine Research, Fish Disease Group, Nordnes, 5817 Bergen, Norway
| | - Ann-Lisbeth Agnalt
- Institute of Marine Research, Fish Disease Group, Nordnes, 5817 Bergen, Norway
| | - Bjørn T Lunestad
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005 Bergen, Norway
| |
Collapse
|
26
|
Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JHL. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes. Genome Biol Evol 2015; 7:1951-9. [PMID: 26112967 PMCID: PMC4524487 DOI: 10.1093/gbe/evv120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time.
Collapse
Affiliation(s)
- Zhe Qu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nathan James Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon Ming Lam
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome Ho Lam Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
27
|
Meng XL, Liu P, Jia FL, Li J, Gao BQ. De novo Transcriptome Analysis of Portunus trituberculatus Ovary and Testis by RNA-Seq: Identification of Genes Involved in Gonadal Development. PLoS One 2015; 10:e0128659. [PMID: 26042806 PMCID: PMC4456094 DOI: 10.1371/journal.pone.0128659] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/29/2015] [Indexed: 11/21/2022] Open
Abstract
The swimming crab Portunus trituberculatus is a commercially important crab species in East Asia countries. Gonadal development is a physiological process of great significance to the reproduction as well as commercial seed production for P. trituberculatus. However, little is currently known about the molecular mechanisms governing the developmental processes of gonads in this species. To open avenues of molecular research on P. trituberculatus gonadal development, Illumina paired-end sequencing technology was employed to develop deep-coverage transcriptome sequencing data for its gonads. Illumina sequencing generated 58,429,148 and 70,474,978 high-quality reads from the ovary and testis cDNA library, respectively. All these reads were assembled into 54,960 unigenes with an average sequence length of 879 bp, of which 12,340 unigenes (22.45% of the total) matched sequences in GenBank non-redundant database. Based on our transcriptome analysis as well as published literature, a number of candidate genes potentially involved in the regulation of gonadal development of P. trituberculatus were identified, such as FAOMeT, mPRγ, PGMRC1, PGDS, PGER4, 3β-HSD and 17β-HSDs. Differential expression analysis generated 5,919 differentially expressed genes between ovary and testis, among which many genes related to gametogenesis and several genes previously reported to be critical in differentiation and development of gonads were found, including Foxl2, Wnt4, Fst, Fem-1 and Sox9. Furthermore, 28,534 SSRs and 111,646 high-quality SNPs were identified in this transcriptome dataset. This work represents the first transcriptome analysis of P. trituberculatus gonads using the next generation sequencing technology and provides a valuable dataset for understanding molecular mechanisms controlling development of gonads and facilitating future investigation of reproductive biology in this species. The molecular markers obtained in this study will provide a fundamental basis for population genetics and functional genomics in P. trituberculatus and other closely related species.
Collapse
Affiliation(s)
- Xian-liang Meng
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, People’s Republic of China
- * E-mail: (XM); (PL)
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, People’s Republic of China
- * E-mail: (XM); (PL)
| | - Fu-long Jia
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, People’s Republic of China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, People’s Republic of China
| | - Bao-Quan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
28
|
Houde M, Douville M, Gagnon P, Sproull J, Cloutier F. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:10-18. [PMID: 25733190 DOI: 10.1016/j.ecoenv.2015.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna.
Collapse
Affiliation(s)
- Magali Houde
- Environment Canada, Science and Technology Branch, Centre Saint-Laurent, 105 McGill Street, Montreal, QC, Canada H2Y 2E7.
| | - Mélanie Douville
- Environment Canada, Science and Technology Branch, Centre Saint-Laurent, 105 McGill Street, Montreal, QC, Canada H2Y 2E7.
| | - Pierre Gagnon
- Environment Canada, Science and Technology Branch, Centre Saint-Laurent, 105 McGill Street, Montreal, QC, Canada H2Y 2E7.
| | - Jim Sproull
- Environment Canada, Science and Technology Branch, Prairie and Northern Laboratory for Environmental Testing, 5320 122 St. NW, Edmonton, AB, Canada T6H 3S5.
| | - François Cloutier
- Environment Canada, Environmental Protection Operations Directorate, 105 McGill Street, Montreal, QC, Canada H2Y 2E7.
| |
Collapse
|
29
|
Sin YW, Kenny NJ, Qu Z, Chan KW, Chan KWS, Cheong SPS, Leung RWT, Chan TF, Bendena WG, Chu KH, Tobe SS, Hui JHL. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen Comp Endocrinol 2015; 214:167-76. [PMID: 25101838 DOI: 10.1016/j.ygcen.2014.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
Although the sesquiterpenoid juvenile hormone (JH) and the steroidal ecdysteroids are of vital importance to the development and reproduction of insects, our understanding of the evolution of these crucial hormonal regulators in other arthropods is limited. To better understand arthropod hormone evolution and regulation, here we describe the hormonal pathway genes (e.g. those involved in hormone biosynthesis, degradation, regulation and signal transduction) of a new decapod model, the shrimp Neocaridina denticulata. The majority of known insect sesquiterpenoid and ecdysteroid pathway genes and their regulators are contained in the N. denticulata genome. In the sesquiterpenoid pathway, these include biosynthetic pathway components: juvenile hormone acid methyltransferase (JHAMT); hormone binding protein: juvenile hormone binding protein (JHBP); and degradation pathway components: juvenile hormone esterase (JHE), juvenile hormone esterase binding protein (JHEBP) and juvenile hormone epoxide hydrolase (JHEH), with the JHBP, JHEBP and JHEH genes being discovered in a crustacean for the first time here. Ecdysteroid biosynthetic pathway genes identified include spook, phantom, disembodied, shadow and CYP18. Potential hormonal regulators and signal transducers such as allatostatins (ASTs), Methoprene-tolerant (Met), Retinoid X receptor (RXR), Ecdysone receptor (EcR), calponin-like protein Chd64, FK509-binding protein (FKBP39), Broad-complex (Br-c), and crustacean hyperglycemic hormone/molt-inhibiting hormone/gonad-inhibiting hormone (CHH/MIH/GIH) genes are all present in the shrimp N. denticulata. To our knowledge, this is the first report of these hormonal pathways and their regulatory genes together in a single decapod, providing a vital resource for further research into development, reproduction, endocrinology and evolution of crustaceans, and arthropods in general.
Collapse
Affiliation(s)
- Yung Wa Sin
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nathan J Kenny
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhe Qu
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Wo Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Katie W S Chan
- The Hong Kong Institute of Vocational Education, Chaiwan, Hong Kong
| | - Sam P S Cheong
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ricky W T Leung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Ka Hou Chu
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| | - Jerome H L Hui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology and Centre for Soybean Research, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
30
|
Lee JH, Momani J, Kim YM, Kang CK, Choi JH, Baek HJ, Kim HW. Effective RNA-silencing strategy of Lv-MSTN/GDF11 gene and its effects on the growth in shrimp, Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:9-16. [DOI: 10.1016/j.cbpb.2014.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
31
|
Sex-lethal gene of the Chinese mitten crab Eriocheir sinensis: cDNA cloning, induction by eyestalk ablation, and expression of two splice variants in males and females. Dev Genes Evol 2014; 224:97-105. [DOI: 10.1007/s00427-014-0467-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
|
32
|
Wang W, Wu X, Liu Z, Zheng H, Cheng Y. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS One 2014; 9:e84921. [PMID: 24454766 PMCID: PMC3890295 DOI: 10.1371/journal.pone.0084921] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The crustacean hepatopancreas has different functions including absorption, storage of nutrients and vitellogenesis during growth, and ovarian development. However, genetic information on the biological functions of the crustacean hepatopancreas during such processes is limited. The swimming crab, Portunus trituberculatus, is a commercially important species for both aquaculture and fisheries in the Asia-Pacific region. This study compared the transcriptome in the hepatopancreas of female P. trituberculatus during the growth and ovarian maturation stages by 454 high-throughput pyrosequencing and bioinformatics. The goal was to discover genes in the hepatopancreas involved in food digestion, nutrition metabolism and ovarian development, and to identify patterns of gene expression during growth and ovarian maturation. Our transcriptome produced 303,450 reads with an average length of 351 bp, and the high quality reads were assembled into 21,635 contigs and 31,844 singlets. Based on BLASTP searches of the deduced protein sequences, there were 7,762 contigs and 4,098 singlets with functional annotation. Further analysis revealed 33,427 unigenes with ORFs, including 17,388 contigs and 16,039 singlets in the hepatopancreas, while only 7,954 unigenes (5,691 contigs and 2,263 singlets) with the predicted protein sequences were annotated with biological functions. The deduced protein sequences were assigned to 3,734 GO terms, 25 COG categories and 294 specific pathways. Furthermore, there were 14, 534, and 22 identified unigenes involved in food digestion, nutrition metabolism and ovarian development, respectively. 212 differentially expressed genes (DEGs) were found between the growth and endogenous stage of the hepatopancreas, while there were 382 DEGs between the endogenous and exogenous stage hepatopancreas. Our results not only enhance the understanding of crustacean hepatopancreatic functions during growth and ovarian development, but also represent a basis for further research on new genes and functional genomics of P. trituberculatus or closely related species.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Zhijun Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Huajun Zheng
- Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
Lee JH, Kim BK, Seo YI, Choi JH, Kang SW, Kang CK, Park WG, Kim HW. Four cDNAs encoding lipoprotein receptors from shrimp (Pandalopsis japonica): structural characterization and expression analysis during maturation. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:51-62. [PMID: 24389120 DOI: 10.1016/j.cbpb.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
As in all other oviparous animals, lipoprotein receptors play a critical role in lipid metabolism and reproduction in decapod crustaceans. Four full-length cDNAs encoding lipoprotein receptors (Paj-VgR, Paj-LpR1, Paj-LpR2A, and Paj-LpR2B) were identified from Pandalopsis japonica through a combination of EST screening and PCR-based cloning. Paj-LpR1 appears to be the first crustacean ortholog of insect lipophorin receptors, and its two paralogs, Paj-LpR2A and Paj-LpR2B, exhibited similar structural characteristics. Several transcriptional isoforms were also identified for all three Paj-LpRs. Each expression pattern was unique, suggesting different physiological roles for these proteins. Paj-VgR is an ortholog of vitellogenin (Vg) receptors from other decapod crustaceans. A phylogenetic analysis of lipoproteins and their receptors suggested that the nomenclature of Vgs from decapod crustaceans may need to be changed. A PCR-based transcriptional analysis showed that Paj-VgR and Paj-LpR2B are expressed almost exclusively in the ovary, whereas Paj-LpR1 and Paj-LpR2A are expressed in multiple tissues. The various transcriptional isoforms of the three Paj-LpRs exhibited unique tissue distribution profiles. A transcriptional analysis of each receptor using tissues with different GSI values showed that the change in transcription of Paj-VgRs, Paj-LpR2A and Paj-LpR1 was not as significant as that of Vgs during maturation. However, the transcriptional levels of Paj-LpR2B decreased in ovary at maturation, suggesting that their transcriptional regulation is involved in reproduction.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Bo Kwang Kim
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Young-Il Seo
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Jung Hwa Choi
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Seung-Wan Kang
- Gyeongsangnam-do Fisheries Resources Research Institute, South Korea
| | - Chang-Keun Kang
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Won-gyu Park
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea; Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
34
|
Koenig S, Solé M. Natural variability of hepatic biomarkers in Mediterranean deep-sea organisms. MARINE ENVIRONMENTAL RESEARCH 2012; 79:122-131. [PMID: 22763180 DOI: 10.1016/j.marenvres.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
Biomarker assays are widely used as proxies for contaminant-induced effects in aquatic organisms. However, in many cases, their intrinsic natural variability due to exogenous and endogenous factors makes the interpretation of biomarker data difficult. In the present study, we investigated the natural fluctuations of six hepatic biomarkers, namely ethoxyresorufin-O-deethylase (EROD) in fish and pentoxyresorufin-O-deethylase (PROD) in crustacea, catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX) and glutathione reductase (GR) in two deep-sea fish species, namely Alepocephalus rostratus and Lepidion lepidion and the decapod crustacean Aristeus antennatus. The NW Mediterranean deep-sea environment is characterized by very stable temperature and salinity conditions, allowing the exclusion of these two factors as potential sources of interference with biomarker activities. Biomarker results exhibited a clear influence of reproductive processes on enzyme activities, in particular in A. rostratus, which presented a pronounced seasonal pattern linked to variations in the gonadosomatic index (GSI). In addition, other factors such as food availability may also have influenced the observed variability, in particular in specimens of L. lepidion, which did not exhibit variations in reproductive activity throughout the sampling period. Depth-related variability did not exhibit a clear trend and fluctuations across sampling depths were not attributable to any specific factor. Body size had also a significant influence on some biomarkers, although allometric scaling of certain enzyme activities appears to be species-specific. The present work has thus shown that despite the lack of fluctuations of abiotic parameters such as temperature and salinity, biomarker activities in deep-sea organisms still exhibit significant variability, mainly as a result of reproductive processes and food availability.
Collapse
Affiliation(s)
- Samuel Koenig
- Instituto de Ciencias del Mar (ICM-CSIC), Paseo Marítimo de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | |
Collapse
|
35
|
Kim M, Jeon JM, Oh CW, Kim YM, Lee DS, Kang CK, Kim HW. Molecular characterization of three crustin genes in the morotoge shrimp, Pandalopsis japonica. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:161-71. [PMID: 22613817 DOI: 10.1016/j.cbpb.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/15/2012] [Accepted: 05/12/2012] [Indexed: 11/28/2022]
Abstract
Crustins are among the most important antimicrobial peptides (AMPs) found in decapod crustaceans. They are small cationic AMPs (5-7 kDa) characterized by a proline-rich amino-terminal domain and a cysteine-rich carboxyl-terminal domain. Here, the first 3 crustin-like cDNAs (Pj-crus Ia, Ib, and II) were identified from the morotoge shrimp, Pandalopsis japonica. The full-length cDNAs of Pj-crus Ia, Ib, and II consisted of 1135, 580, and 700 nucleotides and encoded putative proteins containing 109, 119, and 186 amino acids residues, respectively. All 3 identified Pj-crus sequences exhibited the conserved domain organization for crustins, including a signal sequence, a cysteine-containing region, a glycine-rich region, and a whey-acidic protein (WAP) domain. Amino acid sequence comparisons and phylogenetic analysis revealed that the Pj-crus Ia and Ib belong to type I crustins (e.g., carcinin), which have been mostly identified from Brachyura and Astacidea, whereas Pj-crus II was classified as belonging to the type II crustins, which are mainly found in Dendrobranchiata. An analysis of the organization of these 3 Pj-crus genes revealed that the splicing site within the WAP domain may be an important key for classifying types I and II crustin family members. The tissue distribution profile results showed that the Pj-crus I genes were expressed in a tissue-specific manner but that the Pj-crus II gene was expressed ubiquitously, suggesting that these crustins may play different roles in various tissues or under different physiological conditions. The bacterial challenge results suggested that the Pj-crus genes may be transcriptionally influenced by different bacterial types. This comparative study of various crustin family members will help extend the knowledge on the crustacean innate immune response, which will provide important basic information for controlling shrimp immunity against various pathogens.
Collapse
Affiliation(s)
- MeeSun Kim
- Department of Marine Biology, Pukyong National University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Two type I crustacean hyperglycemic hormone (CHH) genes in Morotoge shrimp (Pandalopsis japonica): cloning and expression of eyestalk and pericardial organ isoforms produced by alternative splicing and a novel type I CHH with predicted structure shared with type II CHH peptides. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:88-99. [PMID: 22525298 DOI: 10.1016/j.cbpb.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 11/23/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) peptide family members play critical roles in growth and reproduction in decapods. Three cDNAs encoding CHH family members (Pj-CHH1ES, Pj-CHH1PO, and Pj-CHH2) were isolated by a combination of bioinformatic analysis and conventional cloning strategies. Pj-CHH1ES and Pj-CHH1PO were products of the same gene that were generated by alternative mRNA splicing, whereas Pj-CHH2 was the product of a second gene. The Pj-CHH1 and Pj-CHH2 genes had four exons and three introns, suggesting the two genes arose from gene duplication. The three cDNAs were classified in the type I CHH subfamily, as the deduced amino acid sequences had a CHH precursor-related peptide sequence positioned between the N-terminal signal sequence and C-terminal mature peptide sequence. The Pj-CHH1ES isoform was expressed at a higher level in the eyestalk X-organ/sinus gland (XO/SG) complex and at a lower level in the gill. The Pj-CHH1PO isoform was expressed at higher levels in the XO/SG complex, brain, abdominal ganglion, and thoracic ganglion and at a lower level in the epidermis. Pj-CHH2 was expressed at a higher level in the thoracic ganglion and at a lower level in the gill. Real-time polymerase chain reaction was used to quantify the effects of eyestalk ablation on the mRNA levels of the three Pj-CHHs in the brain, thoracic ganglion, and gill. Eyestalk ablation reduced expression of Pj-CHH1ES in the brain and Pj-CHH1PO and Pj-CHH2 in the thoracic ganglion. Sequence alignment of the Pj-CHHs with CHHs from other species indicated that Pj-CHH2 had an additional alanine at position #9 of the mature peptide. Molecular modeling showed that the Pj-CHH2 mature peptide had a short alpha helix (α1) in the N-terminal region, which is characteristic of type II CHHs. This suggests that Pj-CHH2 differs in function from other type I CHHs.
Collapse
|