1
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Yeramilli V, Cheddadi R, Benjamin H, Martin C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms 2023; 11:2206. [PMID: 37764050 PMCID: PMC10534571 DOI: 10.3390/microorganisms11092206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of intestinal morbidity and mortality in neonates. A large body of work exists; however, the pathogenesis of NEC remains poorly understood. Numerous predictors have been implicated in the development of NEC, with relatively less emphasis on maternal factors. Utilizing human tissue plays a crucial role in enhancing our comprehension of the underlying mechanisms accountable for this devastating disease. In this review, we will discuss how maternal stress affects the pathogenesis of NEC and how changes in the intestinal microbiome can influence the development of NEC. We will also discuss the results of transcriptomics-based studies and analyze the gene expression changes in NEC tissues and other molecular targets associated with the pathogenesis of NEC.
Collapse
Affiliation(s)
| | | | | | - Colin Martin
- Division of Pediatric, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. S., Lowder Building Suite 300, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Das BK, Roy P, Rout AK, Sahoo DR, Panda SP, Pattanaik S, Dehury B, Behera BK, Mishra SS. Molecular cloning, GTP recognition mechanism and tissue-specific expression profiling of myxovirus resistance (Mx) protein in Labeo rohita (Hamilton) after Poly I:C induction. Sci Rep 2019; 9:3956. [PMID: 30850653 PMCID: PMC6408538 DOI: 10.1038/s41598-019-40323-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
The myxovirus resistance (Mx) proteins belong to interferon-induced dynamin GTPase and play pivotal role in the inhibition of replication of numerous viruses. These antiviral proteins are released in usual or diseased condition to prevent the viral attack and to carry regular cellular activities like endocytosis and trafficking of nucleoproteins into the nucleus. The invasion of virus up-regulates the expression of Mx transcripts and double-stranded RNA mimic like polyinosinic polycytidyilic acid (Poly I:C). To understand the tissue-specific expression profiling and mechanism of GTP recognition of Mx protein from Labeo rohita (rohu), the full-length gene was cloned, sequenced and characterized through various Bioinformatics tools for the first time. The Mx cDNA was comprised of 2297 bp, and the open reading frame of 1938 bp encodes polypeptide of 631 amino acids. The coding sequence of Mx protein possess the signature motif of dynamin superfamily, LPRG(S/K)GIVTR, the tripartite guanosine-5/triphosphate (GTP)-binding motif (GXXXSGKS/T, DXXG and T/NKXD) and the leucine zipper motifs at the C-terminal end, well conserved in all interferon-induced Mx protein in vertebrates. Western blotting confirmed the molecular weight of Mx protein to be 72 kDa. After the intraperitoneal challenge of L. rohita with a Poly I:C, up-regulation of Mx protein was observed in brain, spleen, liver, kidney, intestine, heart, muscle, and gill. Ontogeny study displayed pronounced expression of Mx protein in all stages of the developmental of Rohu after Poly I:C induction. However a persistent expression of Mx transcript was also observed in Rohu egg as well as milt without induction with Poly I:C. Higher expression of Mx gene was observed on 96 h where it was 6.4 folds higher than the control. The computational modelling of Mx protein portrayed the tripartite N-terminal G-domain that binds to GTP, the bundle-signaling element (BSE) which interconnects the G-domain to the elongated stalk domain and C-terminal helical stalk domain. In agreement with the experimental studies, a series of conserved residues viz., Gln52, Ser53, Ser54, Leu68, Pro69, Gly71, Gly73, Thr76, Asp151, Gly154, Thr220, Lys221, Val251, Cys253, Arg254, and Gly255 were computed to be indispensable for tight anchoring of GTP within binding cavity of G-domain. The binding free energy calculation study depicted that the van der Waals and electrostatic terms contributs significantly to molecular recognition of GTP. Collectively, our study provides mechanistic insights into the tissue-specific expression profiling and GTP binding mechanism of Mx protein from Labeo rohita, which is expected to drive further research on several cellular events including viral resistance and endocytosis in the near future.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India. .,Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Pragyan Roy
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Deepak Ranjan Sahoo
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India
| | - Soumya Prasad Panda
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India
| | - Sushmita Pattanaik
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.,Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Sudhansu Sekhar Mishra
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751012, India
| |
Collapse
|
4
|
1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Sopinka NM, Capelle PM, Semeniuk CAD, Love OP. Glucocorticoids in Fish Eggs: Variation, Interactions with the Environment, and the Potential to Shape Offspring Fitness. Physiol Biochem Zool 2016; 90:15-33. [PMID: 28051944 DOI: 10.1086/689994] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Wild and captive vertebrates face multiple stressors that all have the potential to induce chronic maternal stress (i.e., sustained, elevated plasma glucocorticoids), resulting in embryo exposure to elevated maternally derived glucocorticoids. In oviparous taxa such as fish, maternally derived glucocorticoids in eggs are known for their capacity to shape offspring phenotype. Using a variety of methodologies, scientists have quantified maternally derived levels of egg cortisol, the primary glucocorticoid in fishes, and examined the cascading effects of egg cortisol on progeny phenotype. Here we summarize and interpret the current state of knowledge on egg cortisol in fishes and the relationships linking maternal stress/state to egg cortisol and offspring phenotype/fitness. Considerable variation in levels of egg cortisol exists across species and among females within a species; this variation is hypothesized to be due to interspecific differences in reproductive life history and intraspecific differences in female condition. Outcomes of experimental studies manipulating egg cortisol vary both inter- and intraspecifically. Moreover, while exogenous elevation of egg cortisol (as a proxy for maternal stress) induces phenotypic changes commonly considered to be maladaptive (e.g., smaller offspring size), emerging work in other taxa suggests that there can be positive effects on fitness when the offspring's environment is taken into account. Investigations into (i) mechanisms by which egg cortisol elicits phenotypic change in offspring (e.g., epigenetics), (ii) maternal and offspring buffering capacity of cortisol, and (iii) factors driving natural variation in egg cortisol and how this variation affects offspring phenotype and fitness are all germane to discussions on egg glucocorticoids as signals of maternal stress.
Collapse
|
6
|
Taylor JJ, Sopinka NM, Wilson SM, Hinch SG, Patterson DA, Cooke SJ, Willmore WG. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka). Comp Biochem Physiol A Mol Integr Physiol 2016; 200:87-93. [DOI: 10.1016/j.cbpa.2016.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/02/2023]
|
7
|
PAITZ RYANTHOMAS, MOMMER BRETTCHRISTIAN, SUHR ELISSA, BELL ALISONMARIE. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2015; 323:422-9. [PMID: 26036752 PMCID: PMC5977982 DOI: 10.1002/jez.1937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to current environmental conditions. Complicating this hypothesis is the potential for developing embryos to modulate their early endocrine environment. This study utilized the threespined stickleback (Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf). Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development in the presence of a number of maternal steroids but levels begin to change quickly following fertilization. This suggests that embryonic processes change the early endocrine environment and hence influence the ability of maternal steroids to affect development. With these findings, G. aculeatus becomes an intriguing system in which to study how selection may act on both maternal and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal effects.
Collapse
Affiliation(s)
- RYAN THOMAS PAITZ
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | - BRETT CHRISTIAN MOMMER
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
- GIGA Neurosciences, University of Liege, Li ege, Belgium
| | - ELISSA SUHR
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| | - ALISON MARIE BELL
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
8
|
Li M, Christie H, Leatherland J. Modulation of GR activity does not affect the in vitro metabolism of cortisol by rainbow trout ovarian follicles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1887-1897. [PMID: 25148794 DOI: 10.1007/s10695-014-9976-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
The goal of the study was to determine whether the metabolic clearance of cortisol from rainbow trout (Oncorhynchus mykiss) ovarian follicles is affected by the level of ovarian steroidogenesis, and whether it involves the activation of glucocorticoid receptors (GRs). Ovarian follicles were incubated in vitro; the adenylate cyclase activator, forskolin, was used to stimulate ovarian steroidogenesis, and the modulation of GR activity was brought about using GR agonists (cortisol and dexamethasone) or the GR antagonist, mifepristone (RU486). The follicles were co-incubated with [2, 4, 6, 7 (3)H] cortisol, and the tritium-labelled steroid products were separated by HPLC. In addition, the rates of expression of genes encoding for the two forms of GR (gr1 and gr2) were measured. Cortisone, cortisol sulphate, and cortisone sulphate were the major glucocorticoid products of cortisol metabolism, indicative of the action of 11β-hydroxysteroid dehydrogenase and glucocorticoid sulphotransferase in the follicular cells. There were no effects of RU486 or forskolin on the rates of [(3)H]cortisol metabolism suggesting that cortisol metabolism by ovarian follicles was independent of GR activation, and not influenced by increased activation of gonadal reproductive steroidogenesis.
Collapse
Affiliation(s)
- Mao Li
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
9
|
Mommens M, Fernandes JMO, Tollefsen KE, Johnston IA, Babiak I. Profiling of the embryonic Atlantic halibut (Hippoglossus hippoglossus L.) transcriptome reveals maternal transcripts as potential markers of embryo quality. BMC Genomics 2014; 15:829. [PMID: 25269745 PMCID: PMC4246526 DOI: 10.1186/1471-2164-15-829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Commercial Atlantic halibut (Hippoglossus hippoglossus) farming is restricted by variable oocyte quality, slow growth, and early maturation of male fish. Maternally transferred components regulate early developmental processes; therefore, they have an effect on the future viability of the embryo. Using a newly developed Agilent 10 k custom-made oligonucleotide array, we profiled components of the transcriptome involved in immune defence as well as germline and muscle development during early developmental stages: 8-cell embryos (8CS), germ ring stage (GR), 10-somite stage (10SS), and hatched embryos (HT). In addition, we identified differentially expressed transcripts in low (≤9 ± 3% hatching) and high (≥86 ± 3°% hatching) quality eggs at 8CS to identify potential maternal markers for embryo quality. RESULTS Out of 2066 differentially expressed transcripts, 160 were identified as maternal transcripts being specifically expressed at 8CS only. Twenty transcripts were differentially expressed in 8-cell embryos between low and high quality egg groups. Several immune-related transcripts were identified as promising molecular markers of hatching success including interferon regulatory factor 7 and mhc class 2A chain. Differential expression was positively validated with quantitative real-time PCR. CONCLUSIONS We have demonstrated maternal transfer of innate and adaptive immune system transcripts into Atlantic halibut embryos and their relation with future embryo developmental potential. We identified several transcripts as potential molecular markers of embryo quality. The developed microarray represents a useful resource for improving the commercial production of Atlantic halibut.
Collapse
Affiliation(s)
| | | | | | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway.
| |
Collapse
|
10
|
Heinecke RD, Chettri JK, Buchmann K. Adaptive and innate immune molecules in developing rainbow trout, Oncorhynchus mykiss eggs and larvae: expression of genes and occurrence of effector molecules. FISH & SHELLFISH IMMUNOLOGY 2014; 38:25-33. [PMID: 24561127 DOI: 10.1016/j.fsi.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
The ontogenetic development of the immune system was studied during the egg phase and the early post-hatch period of rainbow trout. Quantitative real-time PCR (qPCR) was used to assess the timing and degree of expression of 9 important immune relevant genes and EF1-α. Further, immunohistochemical staining using monoclonal antibodies was applied on rainbow trout embryos and larvae in order to localize five different protein molecules (MHCII, CD8, IgM, IgT and SAA) in the developing tissue and immune organs. Maternally transferred transcripts of EF1-α mRNA were detected in the unfertilized egg. Early onset of expression was seen for all immune genes at very low levels. The amount of mRNA slowly increased and peaked around and after hatching. The highest increases were seen for MHCII, C3, C5 and SAA. Immunohistochemistry using five monoclonal antibodies showed positive staining from day 84 post fertilization. Skin, gills, intestine, pseudobranch and thymus showed reactivity for MHCII, thymus for CD8, gill mucus for IgT and pseudobranch and cartilage associated tissue for SAA. The importance of detected factors for early protection of eggs and larvae is discussed.
Collapse
Affiliation(s)
- Rasmus D Heinecke
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| | - Jiwan K Chettri
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Cecchini S, Paciolla M, Biffali E, Borra M, Ursini MV, Lioi MB. Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758). FISH & SHELLFISH IMMUNOLOGY 2013; 35:988-992. [PMID: 23765117 DOI: 10.1016/j.fsi.2013.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout.
Collapse
Affiliation(s)
- Stefano Cecchini
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza 85100, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Duan D, Sun Z, Jia S, Chen Y, Feng X, Lu Q. Characterization and expression analysis of common carp Cyprinus carpio TLR5M. DNA Cell Biol 2013; 32:611-20. [PMID: 23930591 DOI: 10.1089/dna.2013.2051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLR5 is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the TLR5M gene of common carp using the rapid amplification of cDNA ends (RACE) method. The TLR5M cDNA was 3182 bp in length and contained a 2658-bp open reading frame, which encoded a protein of 885 amino acids (aa). The entire coding region of the TLR5M gene was successfully amplified from genomic DNA and contained a single exon. The aa sequence of carp TLR5M showed the highest similarity (84.46%) to Cirrhinus mrigala. Tissue-specific expression analysis of the TLR5M gene by quantitative real-time polymerase chain reaction revealed its broad distribution in various organs and tissues; however, the highest level of TLR5M expression was noted in the liver. TLR5M gene expression was examined after flagellin stimulation and showed highly significant (p<0.01) induction in the spleen, heart, liver and kidney. The induction of TLR5M was analyzed in various organs infected with Aeromonas hydrophila. TLR5M gene expression in the kidney and spleen was significantly (p<0.01) increased. Concurrently, modulation of TLR5M gene expression and the induction of IFN-γ, IL-1β, IL-10 and TNF-α4 were analyzed in peripheral blood leucocytes after lipopolysaccharide, concanavalin A, and flagellin stimulation. In the treated group, significant induction of these genes was noted, although the intensity varied between the tissues. These findings may indicate a crucial role for TLR5M in the innate immunity of common carp in response to pathogenic invasion.
Collapse
Affiliation(s)
- Duo Duan
- Key Laboratory for Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University , Changchun, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Li M, Christie HL, Leatherland JF. The in vitro metabolism of cortisol by ovarian follicles of rainbow trout (Oncorhynchus mykiss): comparison with ovulated oocytes and pre-hatch embryos. Reproduction 2012; 144:713-22. [DOI: 10.1530/rep-12-0354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mid-vitellogenic stage rainbow trout (Oncorhynchus mykiss) ovarian follicles (both intact and yolk free (YF)), ovulated oocytes and embryos were co-incubated with [2,4,6,7-3H]cortisol for 18 h to determine the degree and nature of the metabolism and biotransformation of the glucocorticoid. There was evidence of the conversion of cortisol to the less biologically potent glucocorticoid, cortisone, and the formation of glucocorticoid sulphates (both cortisol and cortisone) for all cell and tissue samples, suggesting the presence of 11β-hydroxysteroid dehydrogenase (11β-HSD) and glucocorticoid sulphotransferase (GST) activity at all stages; however, GST activity was particularly marked in both intact and YF ovarian follicles, suggesting an important role of follicles in limiting the exposure of oocyte to maternal cortisol. As there was no evidence of 11β-HSD or GST activity in ovarian fluid, the findings affirm that ovarian follicles (probably the thecal and granulosa cells) provide a barrier against the transfer of cortisol to the oocytes by forming sulphated steroids, whereas ovulated oocytes and early embryos have a more limited capacity to either metabolize or conjugate cortisol and are therefore more vulnerable at the post-ovulatory and early embryonic stages to increases in exposure to the glucocorticoid.
Collapse
|
14
|
Li M, Leatherland JF. The interaction between maternal stress and the ontogeny of the innate immune system during teleost embryogenesis: implications for aquaculture practice. JOURNAL OF FISH BIOLOGY 2012; 81:1793-1814. [PMID: 23130684 DOI: 10.1111/j.1095-8649.2012.03447.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The barrier defences and acellular innate immune proteins play critical roles during the early-stage fish embryos prior to the development of functional organ systems. The innate immune proteins in the yolk of embryos are of maternal origin. Maternal stress affects the maternal-to-embryo transfer of these proteins and, therefore, environmental stressors may change the course of embryo development, including embryonic immunocompetency, via their deleterious effect on maternal physiology. This review focuses on the associations that exist between maternal stress, maternal endocrine disturbance and the responses of the acellular innate immune proteins of early-stage fish embryos. Early-stage teleostean embryos are dependent upon the adult female for the formation of the zona pellucida as an essential barrier defence, for their supply of nutrients, and for the innate immunity proteins and antibodies that are transferred from the maternal circulation to the oocytes; maternally derived hormones are also transferred, some of which (such as cortisol) are known to exert a suppressive action on some aspects of the immune defences. This review summarizes what is known about the effects of oocyte cortisol content on the immune system components in early embryos. The review also examines recent evidence that embryonic cells during early cleavage have the capacity to respond to increased maternal cortisol transfer; this emphasizes the importance of maternal and early immune competence on the later life of fishes, both in the wild and in intensive culture.
Collapse
Affiliation(s)
- M Li
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
15
|
Li M, Leatherland JF, Vijayan MM, King WA, Madan P. Glucocorticoid receptor activation following elevated oocyte cortisol content is associated with zygote activation, early embryo cell division, and IGF system gene responses in rainbow trout. J Endocrinol 2012; 215:137-49. [PMID: 22782383 DOI: 10.1530/joe-12-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased in ovo cortisol content of rainbow trout oocytes from ~3·5 to ~5·0 ng.oocyte(-1) before fertilization enhances the growth of embryos and juveniles and changes the long-term expression pattern of IGF-related genes. This study used embryos reared from oocytes enriched with cortisol and the glucocorticoid receptor (GR) antagonist, RU486, to determine whether the growth-promoting actions of cortisol involve GR protein activation and modulation of gr expression. Whole-mount in situ immunohistofluorescence studies of zygotes showed that enhanced oocyte cortisol increased the immunofluorescent GR signal and activated the relocation of GR from a general distribution throughout the cytoplasm to an accumulation in the peri-nuclear cytoplasm. In ovo cortisol treatment increased the number of embryonic cells within 48-h post-fertilization, and RU486 partially suppressed this cortisol stimulation of cell duplication. In addition, there was complex interplay between the expression of gr and igf system-related genes spatiotemporally in the different treatment groups, suggesting a role for GR in the regulation of the expression of development. Taken together, these findings indicate an essential role for GR in the regulation of epigenomic events in very early embryos that promoted the long-term growth effects of the embryos and juvenile fish. Moreover, the pretreatment of the oocyte with RU486 had a significant suppressive effect on the maternal mRNA transcript number of gr and igf system-related genes in oocytes and very early stage embryos, suggesting an action of antagonist on the stability of the maternal transcriptome.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/physiology
- Cleavage Stage, Ovum/cytology
- Cleavage Stage, Ovum/metabolism
- Cleavage Stage, Ovum/physiology
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/physiology
- Female
- Gene Expression Regulation, Developmental
- Hydrocortisone/analysis
- Hydrocortisone/metabolism
- Oncorhynchus mykiss/embryology
- Oncorhynchus mykiss/genetics
- Oncorhynchus mykiss/metabolism
- Oncorhynchus mykiss/physiology
- Oocytes/chemistry
- Oocytes/metabolism
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction/genetics
- Somatomedins/genetics
- Somatomedins/metabolism
- Time Factors
- Up-Regulation/physiology
- Zygote/metabolism
- Zygote/physiology
Collapse
Affiliation(s)
- Mao Li
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|