1
|
von Schalburg KR, Gowen BE, Christensen KA, Ignatz EH, Hall JR, Rise ML. The late-evolving salmon and trout join the GnRH1 club. Histochem Cell Biol 2023; 160:517-539. [PMID: 37566258 DOI: 10.1007/s00418-023-02227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada.
| | - Brent E Gowen
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
2
|
Functional Activity of Recombinant Forms of Amh and Synergistic Action with Fsh in European Sea Bass Ovary. Int J Mol Sci 2021; 22:ijms221810092. [PMID: 34576257 PMCID: PMC8467395 DOI: 10.3390/ijms221810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.
Collapse
|
3
|
Risalde MA, Molina AM, Lora AJ, Ayala N, Gómez-Villamandos JC, Moyano MR. Immunohistochemical expression of aromatase cyp19a1a and cyp19a1b in the ovary and brain of zebrafish (Danio rerio) exposed to different concentrations of bisphenol A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105876. [PMID: 34120034 DOI: 10.1016/j.aquatox.2021.105876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/17/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is used to produce plastic and plastic derived products in multitude of daily utensils, being one of the industrial compounds most widely used. This endocrine disrupting chemical (EDCs) is a well-known environmental pollutant released into the aquatic environment from industrial wastewater, sewage sludge or landfill leachate. Aromatases are considered potential targets of EDCs with characteristics that make them suitable biomarkers of exposure to their effects. The main objective of our study was to evaluate the expression of cyp19a aromatase as a toxicological endpoint after BPA exposure through the identification and assessment of alterations of the main cells responsible for cyp19a1a and cyp19a1b expression in the zebrafish ovary and brain using different concentrations of BPA in water. Immunohistochemistry was used to analyze the expression of these enzymes in female zebrafish exposed and not exposed to different concentrations of BPA (1, 10, 100 and 1000 μg / L) in water (n = 6/group) for 14 days. The results obtained in this study showed that the cyp19a aromatase system, involved in the synthesis of steroid compounds, is specially located in distinct oocyte stages in the ovary (cyp19a1a) and in radial glial cells of the brain (cyp19a1b). An overexpression of these aromatases was observed after BPA exposure in zebrafish, peaking from a concentration of 10 µg/L and showing to be good biomarkers of exposure to identify the early effects of low BPA concentrations. To our knowledge, this study is the first to localize and quantify the expression of cyp19a1a and cyp19a1b in the cells of brain and ovary after fish exposure to different BPA concentrations in water.
Collapse
Affiliation(s)
- Maria A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | - Ana Mª Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain.
| | - Antonio J Lora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| | - Nahum Ayala
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain.
| | - Jose C Gómez-Villamandos
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| | - Mª Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| |
Collapse
|
4
|
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Skaftnesmo KO, Thyri Segafredo F, Wargelius A. Transcriptomic analysis of dead end knockout testis reveals germ cell and gonadal somatic factors in Atlantic salmon. BMC Genomics 2020; 21:99. [PMID: 32000659 PMCID: PMC6993523 DOI: 10.1186/s12864-020-6513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon. Results We have for the first time analysed RNA-sequencing data from germ cell-free (GCF)/dnd knockout and wild type (WT) salmon testis and searched for genes preferentially expressed in either germ cells or gonadal somatic cells. To exclude genes with extra-gonadal expression, our dataset was merged with available multi-tissue transcriptome data. We identified 389 gonad specific genes, of which 194 were preferentially expressed within germ cells, and 11 were confined to gonadal somatic cells. Interestingly, 5 of the 11 gonadal somatic transcripts represented genes encoding secreted TGF-β factors; gsdf, inha, nodal and two bmp6-like genes, all representative vaccine targets. Of these, gsdf and inha had the highest transcript levels. Expression of gsdf and inha was further confirmed to be gonad specific, and their spatial expression was restricted to granulosa and Sertoli cells of the ovary and testis, respectively. Finally, we show that inha expression increases with puberty in both ovary and testis tissue, while gsdf expression does not change or decreases during puberty in ovary and testis tissue, respectively. Conclusions This study contributes with transcriptome data on salmon testis tissue with and without germ cells. We provide a list of novel and known germ cell- and gonad somatic specific transcripts, and show that the expression of two highly active gonadal somatic secreted TGF-β factors, gsdf and inha, are located within granulosa and Sertoli cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | | | - Tomasz Furmanek
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
5
|
Lemcke RA, Stephens CS, Hildebrandt KA, Johnson PA. Anti-Müllerian hormone type II receptor in avian follicle development. Biol Reprod 2019; 99:1227-1234. [PMID: 29931109 DOI: 10.1093/biolre/ioy140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Anti-Müllerian hormone (AMH) helps maintain the ovarian reserve by regulating primordial follicle activation and follicular selection in mammals, although its role within the avian ovary is unknown. In mammals, AMH is primarily produced in granulosa cells of preantral and early antral follicles. Similarly, in the hen, the granulosa cells of smaller follicles are the predominant source of AMH. The importance of AMH in mammalian ovarian dynamics suggests the protein and its specific Type II receptor, AMHRII, may have conserved functions in the hen. AMHRII mRNA expression is highest (P < 0.01) in small follicles of the hen and decreases as follicle size increases. Similarly, expression of AMHRII and AMH is highest in granulosa cells from small follicles as compared to larger follicles. Dissection of 3-5 mm follicles into ooplasm and granulosa components shows that AMHRII mRNA levels are greater in ooplasm than granulosa cells. Furthermore, immunohistochemistry also revealed AMHRII staining in the oocyte and granulosa cells. AMH expression in mammals is elevated during periods of reproductive dormancy, possibly protecting the ovarian reserve. AMHRII and AMH mRNA were significantly higher (P < 0.05) in nonlaying ovaries of broiler hens. In molting layer hens, AMHRII mRNA was significantly greater (P < 0.05) compared to nonmolting hen ovaries. These results suggest that AMH may have a direct effect on the oocyte and, thereby, contribute to bidirectional communication between oocyte and granulosa cells. Enhanced expression of AMHRII and AMH during reproductive quiescence supports a potential role of AMH in protecting the ovarian reserve in hens.
Collapse
Affiliation(s)
- R A Lemcke
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - K A Hildebrandt
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Zhang X, Min Q, Li M, Liu X, Li M, Wang D. Mutation of
cyp19a1b
results in sterile males due to efferent duct obstruction in Nile tilapia. Mol Reprod Dev 2019; 86:1224-1235. [DOI: 10.1002/mrd.23237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xianbo Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
- Guizhou Fisheries Research InstituteGuizhou Academy of Agriculture Sciences Guiyang Guizhou China
| | - Qianwen Min
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
| | - Mengru Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest University Chongqing China
| |
Collapse
|
7
|
Xiao J, Cao K, Zou Y, Xiao S, Wang Z, Cai M. Sex-biased gene discovery from the gonadal transcriptomes of the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
von Schalburg KR, Rondeau EB, Leong JS, Davidson WS, Koop BF. Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Res Notes 2018; 11:639. [PMID: 30176937 PMCID: PMC6122464 DOI: 10.1186/s13104-018-3749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Various stages of mRNA processing are necessary for functionally important genes required during late-stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate translation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and function). Results We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for localization and function within the paternal gamete. Electronic supplementary material The online version of this article (10.1186/s13104-018-3749-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben F Koop
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
9
|
Hinfray N, Sohm F, Caulier M, Chadili E, Piccini B, Torchy C, Porcher JM, Guiguen Y, Brion F. Dynamic and differential expression of the gonadal aromatase during the process of sexual differentiation in a novel transgenic cyp19a1a-eGFP zebrafish line. Gen Comp Endocrinol 2018. [PMID: 28648994 DOI: 10.1016/j.ygcen.2017.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.
Collapse
Affiliation(s)
- Nathalie Hinfray
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| | - Frédéric Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgane Caulier
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Camille Torchy
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Yann Guiguen
- INRA, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), IFR140, Ouest-Genopole, F-35000 Rennes, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
10
|
Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochem Cell Biol 2017; 149:75-96. [DOI: 10.1007/s00418-017-1611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
|
11
|
Abstract
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics of Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
12
|
Rocha A, Zanuy S, Gómez A. Conserved Anti-Müllerian Hormone: Anti-Müllerian Hormone Type-2 Receptor Specific Interaction and Intracellular Signaling in Teleosts. Biol Reprod 2016; 94:141. [PMID: 27226310 DOI: 10.1095/biolreprod.115.137547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.
Collapse
Affiliation(s)
- Ana Rocha
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| |
Collapse
|
13
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
14
|
Caulier M, Brion F, Chadili E, Turies C, Piccini B, Porcher JM, Guiguen Y, Hinfray N. Localization of steroidogenic enzymes and Foxl2a in the gonads of mature zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2015; 188:96-106. [PMID: 26099948 DOI: 10.1016/j.cbpa.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
In zebrafish, the identification of the cells expressing steroidogenic enzymes and their regulators is far from completely fulfilled though it could provide crucial information on the elucidation of the role of these enzymes. The aim of this study was to better characterize the expression pattern of steroidogenic enzymes involved in estrogen and androgen production (Cyp17-I, Cyp11c1, Cyp19a1a and Cyp19a1b) and one of their regulators (Foxl2a) in zebrafish gonads. By using immunohistochemistry, we localized the steroid-producing cells in mature zebrafish gonads and determined different expression patterns between males and females. All these steroidogenic enzymes and Foxl2a were detected both in the testis and ovary. In the testis, they were all localized both in Leydig and germ cells except Cyp19a1b which was only detected in germ cells. In the ovary, Cyp17-I, Cyp19a1a and Foxl2a were immunolocalized in both somatic and germ cells while Cyp19a1b was only detected in germ cells and Cyp11c1 in somatic cells. Moreover, Cyp19a1a and Foxl2a did not display exactly the same patterns of spatial localization but their expressions were correlated suggesting a possible regulation of cyp19a1a gene by Foxl2a in zebrafish. Comparative analysis revealed a dimorphic expression of Cyp11c1, Cyp19a1a, Cyp19a1b and Foxl2a between males and females. Overall, our study provides a detailed description of the expression of proteins involved in the biosynthesis of steroidal hormones at the cellular scale within gonads, which is critical to further elucidating the intimate roles of the enzymes and the use of the zebrafish as a model in the field of endocrinology.
Collapse
Affiliation(s)
- Morgane Caulier
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turies
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Yann Guiguen
- INRA, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), IFR140, Ouest-Genopole, F-35000 Rennes France
| | - Nathalie Hinfray
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
15
|
Delalande C, Goupil AS, Lareyre JJ, Le Gac F. Differential expression patterns of three aromatase genes and of four estrogen receptors genes in the testes of trout (Oncorhynchus mykiss). Mol Reprod Dev 2015; 82:694-708. [DOI: 10.1002/mrd.22509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 05/24/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Christelle Delalande
- Normandie Univ; France
- UNICAEN, EA 2608; France
- INRA USC 1377; 14032 CAEN cedex 5; France
| | - Anne-Sophie Goupil
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| | - Jean-Jacques Lareyre
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| | - Florence Le Gac
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| |
Collapse
|
16
|
von Schalburg KR, Gowen BE, Messmer AM, Davidson WS, Koop BF. Sex-specific expression and localization of aromatase and its regulators during embryonic and larval development of Atlantic salmon. Comp Biochem Physiol B Biochem Mol Biol 2014; 168:33-44. [DOI: 10.1016/j.cbpb.2013.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/03/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023]
|
17
|
Roch GJ, Tello JA, Sherwood NM. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus. Mol Biol Evol 2013; 31:765-78. [PMID: 24361996 PMCID: PMC3969558 DOI: 10.1093/molbev/mst269] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|