1
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
2
|
Rogers EJ, McGuire L, Longstaffe FJ, Clerc J, Kunkel E, Fraser E. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. J Anim Ecol 2022; 91:858-869. [PMID: 35218220 DOI: 10.1111/1365-2656.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defenses can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats (Lasionycteris noctivagans), a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants, and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape, and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defenses or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.
Collapse
Affiliation(s)
- Elizabeth J Rogers
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Liam McGuire
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Fred J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London, ON, Canada
| | - Jeff Clerc
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Normandeau Associates Inc, Gainesville, FL, USA
| | - Emma Kunkel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Erin Fraser
- Environmental Science Program, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, Canada
| |
Collapse
|
3
|
Gregarious locusts down-regulate muscular catabolic capacities yet fly far. Proc Natl Acad Sci U S A 2022; 119:2122086119. [PMID: 35078939 PMCID: PMC8812529 DOI: 10.1073/pnas.2122086119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Vernasco BJ, Emmerson MG, Gilbert ER, Sewall KB, Watts HE. Migratory state and patterns of steroid hormone regulation in the pectoralis muscle of a nomadic migrant, the pine siskin (Spinus pinus). Gen Comp Endocrinol 2021; 309:113787. [PMID: 33862052 DOI: 10.1016/j.ygcen.2021.113787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The endocrine system is known to mediate responses to environmental change and transitions between different life stages (e.g., a non-breeding to a breeding life stage). Previous works from the field of environmental endocrinology have primarily focused on changes in circulating hormones, but a comprehensive understanding of endocrine signaling pathways requires studying changes in additional endocrine components (e.g., receptor densities) in a diversity of contexts and life stages. Migratory birds, for instance, can exhibit dramatic changes in their physiology and behavior, and both sex steroids as well as glucocorticoids are proposed mediators of the transition into a migratory state. However, the role of changes in endocrine signaling components within integral target tissues, such as flight muscles, in modulating the transition into a migratory state remains poorly understood. Here, we examined changes in gene expression levels of and correlational patterns (i.e., integration) between 8 endocrine signaling components associated with either glucocorticoids or sex steroid signaling in the pectoralis muscles of a nomadic migratory bird, the pine siskin (Spinus pinus). The pectoralis muscle is essential to migratory flight and undergoes conspicuous changes in preparation for migration, including hypertrophy. We focus on endocrine receptors and enzymes (e.g., 5α-reductase) that modulate the signaling capacity of circulating hormones within target tissues and may influence either catabolic or anabolic functioning within the pectoralis. Endocrine signaling components were compared between captive birds sampled prior to the expression of vernal migratory preparation and during the expression of a vernal migratory state. While birds exhibited differences in the size and color of the flight muscle and behavioral shifts indicative of a migratory state (i.e., zugunruhe), none of the measured endocrine components differed before and after the transition into the migratory state. Patterns of integration amongst all genes did, however, differ between the two life stages, suggesting the contrasting demands of different life stages may shape entire endocrine signaling networks within target tissues rather than individual components. Our work aligns with previous endocrine studies on pine siskins and, viewed together, suggest additional studies are needed to understand the endocrine system's role in mediating the development and progression of the vernal migratory state in this species. Further, the patterns observed in pine siskins, a nomadic migrant, differ from previous studies on obligate migrants and suggest that different mechanisms or interactions between endocrine signaling components may mediate the migratory transition in nomadic migrants.
Collapse
Affiliation(s)
- Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | | | | | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Green DM, McGuire LP, Vanderwel MC, Willis CKR, Noakes MJ, Bohn SJ, Green EN, Brigham RM. Local trends in abundance of migratory bats across 20 years. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) are species of conservation concern because of the documented annual mortality that occurs at wind energy facilities. Several recent studies have predicted continental-scale declines of hoary bat populations due to interactions with wind turbines. We predicted a decrease in captures at a summer site over 20 years where researchers have captured bats using generally consistent methods. We developed a hierarchical Bayesian model to estimate the relative change in the expected number of captures while controlling for time of year, temperature, and netting effort. We found no decrease in the number of captures for either species. We suggest that the lack of decrease observed at our study site may be a result of compensatory immigration, despite potential broader-scale population declines.
Collapse
Affiliation(s)
- Dana M Green
- Department of Biology, Laboratory Building LB109, University of Regina, Regina, SK, Canada
| | - Liam P McGuire
- Department of Biological Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Mark C Vanderwel
- Department of Biology, Laboratory Building LB248, University of Regina, Regina, SK, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Inter-Disciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Matthew J Noakes
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Shelby J Bohn
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Eric N Green
- Department of Biology, Laboratory Building LB109, University of Regina, Regina, SK, Canada
| | - R Mark Brigham
- Department of Biology, Laboratory Building LB109, University of Regina, Regina, SK, Canada
| |
Collapse
|
6
|
Yap KN, Yamada K, Zikeli S, Kiaris H, Hood WR. Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc 2020; 96:541-556. [PMID: 33164297 DOI: 10.1111/brv.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Shelby Zikeli
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, 29208, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
7
|
Cao T, Jin JP. Evolution of Flight Muscle Contractility and Energetic Efficiency. Front Physiol 2020; 11:1038. [PMID: 33162892 PMCID: PMC7581897 DOI: 10.3389/fphys.2020.01038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The powered flight of animals requires efficient and sustainable contractions of the wing muscles of various flying species. Despite their high degree of phylogenetic divergence, flight muscles in insects and vertebrates are striated muscles with similarly specialized sarcomeric structure and basic mechanisms of contraction and relaxation. Comparative studies examining flight muscles together with other striated muscles can provide valuable insights into the fundamental mechanisms of muscle contraction and energetic efficiency. Here, we conducted a literature review and data mining to investigate the independent emergence and evolution of flight muscles in insects, birds, and bats, and the likely molecular basis of their contractile features and energetic efficiency. Bird and bat flight muscles have different metabolic rates that reflect differences in energetic efficiencies while having similar contractile machinery that is under the selection of similar natural environments. The significantly lower efficiency of insect flight muscles along with minimized energy expenditure in Ca2+ handling is discussed as a potential mechanism to increase the efficiency of mammalian striated muscles. A better understanding of the molecular evolution of myofilament proteins in the context of physiological functions of invertebrate and vertebrate flight muscles can help explore novel approaches to enhance the performance and efficiency of skeletal and cardiac muscles for the improvement of human health.
Collapse
Affiliation(s)
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
8
|
Rogers EJ, Sommers AS, McGuire LP. Seasonal Dynamics of Lipid Metabolism and Energy Storage in the Brazilian Free-Tailed Bat. Physiol Biochem Zool 2019; 92:386-395. [DOI: 10.1086/704107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Migration and reproduction are associated with similar degrees of phenotypic flexibility in an insectivorous bat. Oecologia 2019; 190:747-755. [DOI: 10.1007/s00442-019-04449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
10
|
Voigt CC, Frick WF, Holderied MW, Holland R, Kerth G, Mello MAR, Plowright RK, Swartz S, Yovel Y. PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY. QUARTERLY REVIEW OF BIOLOGY 2019; 92:267-287. [PMID: 29861509 DOI: 10.1086/693847] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat's familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics' echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research 10315 Berlin, Germany, Institute of Biology, Freie Universität Berlin 14195 Berlin, Germany
| | - Winifred F Frick
- Bat Conservation International Austin, Texas 78716 USA, Ecology and Evolutionary Biology, University of California Santa Cruz, California 95064 USA
| | - Marc W Holderied
- School of Biological Sciences, Bristol University Bristol BS8 1TQ United Kingdom
| | - Richard Holland
- School of Biological Sciences, Bangor University Bangor, Gwynedd LL57 2UW United Kingdom
| | - Gerald Kerth
- Applied Zoology and Conservation, University of Greifswald D-17489 Greifswald, Germany
| | - Marco A R Mello
- Department of General Biology, Federal University of Minas Gerais 31270-901 Belo Horizonte, MG, Brazil
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University Bozeman, Montana 59717 USA
| | - Sharon Swartz
- Department of Ecology and Evolutionary Biology and School of Engineering, Brown University Providence, Rhode Island 02912 USA
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, and the "Sagol" School of Neuroscience, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
11
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
12
|
Fraser EE, Brooks D, Longstaffe FJ. Stable isotope investigation of the migratory behavior of silver-haired bats (Lasionycteris noctivagans) in eastern North America. J Mammal 2017. [DOI: 10.1093/jmammal/gyx085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Cortés PA, Bacigalupe LD, Mondaca F, Desrosiers V, Blier PU. Mitochondrial phenotype of marsupial torpor: Fuel metabolic switch in the Chilean mouse-opossumThylamys elegans. ACTA ACUST UNITED AC 2015; 325:41-51. [DOI: 10.1002/jez.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Pablo Andres Cortés
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
- Departamento de Ecología; Center of Applied Ecology and Sustainability; Facultad de Ciencias Biológicas; Universidad Católica de Chile; Santiago Chile
| | - Leonardo Daniel Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Fredy Mondaca
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Véronique Desrosiers
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| | - Pierre U. Blier
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| |
Collapse
|
14
|
Price E, McGuire L, Fenton M, Guglielmo C. Flight muscle carnitine palmitoyl transferase activity varies with substrate chain length and unsaturation in the hoary bat (Lasiurus cinereus). CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fat is an important fuel for bats to support high metabolic rates in extended periods of flight. The fatty acid composition of adipose stores could affect whole animal exercise performance, as fatty acids vary in rates of mobilization and oxidation. A key step in the fatty acid oxidation pathway is transporting fatty acids from the cytosol into mitochondria, mediated by the enzyme carnitine palmitoyl transferase (CPT). Therefore, understanding the substrate preference patterns of CPT in bats is important for interpreting the consequences of adipose fatty acid profiles. We measured CPT activity with eight different fatty acyl CoA substrates (16:0, 16:1ω7, 18:0, 18:1ω9, 18:2ω6, 18:3ω3, 20:4ω6, and 22:6ω3) in the pectoralis muscle of migrating and nonmigrating hoary bats (Lasiurus cinereus (Beauvois, 1796)). The pattern of substrate preference was similar to the patterns previously reported for birds and rats and was not affected by migration. Generally, activity increased with the number of double bonds and was higher with 16 carbon fatty acids compared with 18 carbon fatty acids. Given the observed substrate variation in CPT activity, there is no evidence to suggest that recently reported seasonal changes in the adipose fatty acid composition of migrating hoary bats would lead to increased lipid oxidation rate, and may instead be a consequence of seasonal shifts in diet.
Collapse
Affiliation(s)
- E.R. Price
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - L.P. McGuire
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - M.B. Fenton
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - C.G. Guglielmo
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
15
|
Krüger F, Clare EL, Symondson WOC, Keišs O, Pētersons G. Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Mol Ecol 2013; 23:3672-83. [PMID: 24118366 DOI: 10.1111/mec.12547] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
Migration is widespread among vertebrates, yet bat migration has received little attention and only in the recent decades has a better understanding of it been gained. Migration can cause significant changes in behaviour and physiology, due to increasing energy demands and aerodynamic constraints. Dietary shifts, for example, have been shown to occur in birds before onset of migration. For bats, it is not known if a change in diet occurs during migration, although breeding season-related dietary preference has been documented. It is known that a diet rich in fats and the accumulation of fat deposits do increase the flight range of migratory bats. Some bat species can be regarded as long-distance migrants, covering up to 2000 km between summer and winter roosting areas. Pipistrellus nathusii (Vespertilionidae), a European long-distant migrant, travels each year along the Baltic Sea from north-eastern Europe to hibernate in central and southern Europe. This study presents data on the dietary habits of migrating Pipistrellus nathusii compared with those during the breeding season. We analysed faecal samples from bats on fall migration caught at the Ornithological Field Station in Pape, Latvia and from samples collected in North-Latvian summer roosts. We applied both morphological identification and molecular methods, as morphological methods also recognize life stages of prey and can contribute frequency data. The diets of bats on migration and breeding bats were similar, with Diptera and Lepidoptera comprising the major prey categories. However, certain prey groups could be explained by the different hunting habitats exploited during migration vs. summer residence.
Collapse
Affiliation(s)
- Frauke Krüger
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstr. 75, 24118, Kiel, Germany; Echolot Gbr, Eulerstr. 12, 48155, Münster, Germany
| | | | | | | | | |
Collapse
|