1
|
Karnatak G, Das BK, Puthiyottil M, Devi MS, Paria P, Rajesh M, Sarkar UK, Behera BK, Tiwari VK, Chadha NK, Kumari S. Influence of stocking density and environmental factors on the expression of insulin-like growth factors in cage-reared butter catfish (Ompok bimaculatus, Bloch 1794) within a large reservoir ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123181-123192. [PMID: 37979103 DOI: 10.1007/s11356-023-30790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In vertebrates, insulin-like growth like factors (IGFs) play an important role in growth and other physiological processes. The GH-IGF axis is considered a valuable tool to monitor fish growth performance. Herein, we report the molecular characterization of igf-1, igf-2, and β-actin transcripts and relative expression of igf-1 and igf-2 in the liver and muscle tissue of cage-reared butter catfish, Ompok bimaculatus, in response to different stocking densities (T1, 15 fingerlings m-3; T2, 25 fingerlings m-3; and T3, 35 fingerlings m-3) over 180 days of culture duration. The length of the partial amplified transcript sequence of Obigf-1, Obigf-2, and Obβ-actin was 325, 438, and 924 bp, respectively. Phylogenetically, Obigf-1 and Obigf-2 were closely clustered with catfishes, viz., Clarias magur, Bagarius yarrelli, and Silurus asotus. The expression of igf-1 was significantly downregulated in the liver at higher densities after 120 days as biomass in the cages increased, while igf-2 expression did not change with the stocking densities over the culture period. Cortisol concentration was significantly elevated in T3 groups post 150 days of the culture period and correlated negatively with the expression of igf-1 (p < 0.05) and igf-2 (p > 0.05). Environmental parameters, pH, TDS, hardness, conductivity, and alkalinity showed a significant positive correlation with hepatic IGF expression. Our study indicates that the liver-derived igf-1 plays a more important role in the regulation of growth in response to culture density in the species studied, and thus, igf-1 can be used effectively as a biomarker for growth. Furthermore, this study will help in planning a proper harvest schedule and optimize the culture practices of O. bimaculatus in an open water cage system.
Collapse
Affiliation(s)
- Gunjan Karnatak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India.
| | - Mishal Puthiyottil
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Prasenjit Paria
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Manchi Rajesh
- Fish Nutritional Physiology Lab, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Uttam Kumar Sarkar
- ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, India
| | - Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | | | - Suman Kumari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| |
Collapse
|
2
|
García-Márquez J, Álvarez-Torres D, Cerezo IM, Domínguez-Maqueda M, Figueroa FL, Alarcón FJ, Acién G, Martínez-Manzanares E, Abdala-Díaz RT, Béjar J, Arijo S. Combined Dietary Administration of Chlorella fusca and Ethanol-Inactivated Vibrio proteolyticus Modulates Intestinal Microbiota and Gene Expression in Chelon labrosus. Animals (Basel) 2023; 13:3325. [PMID: 37958080 PMCID: PMC10648860 DOI: 10.3390/ani13213325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The use of functional feeds in aquaculture is currently increasing. This study aimed to assess the combined impact of dietary green microalgae Chlorella fusca and ethanol-inactivated Vibrio proteolyticus DCF12.2 (CVP diet) on thick-lipped grey mullet (Chelon labrosus) juvenile fish. The effects on intestinal microbiota and the transcription of genes related to metabolism, stress, and the immune system were investigated after 90 days of feeding. Additionally, the fish were challenged with Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly I:C) to evaluate the immune response. Microbiota analysis revealed no significant differences in alpha and beta diversity between the anterior and posterior intestinal sections of fish fed the control (CT) and CVP diets. The dominant genera varied between the groups; Pseudomonas and Brevinema were most abundant in the CVP group, whereas Brevinema, Cetobacterium, and Pseudomonas were predominant in the CT group. However, microbial functionality remained unaltered. Gene expression analysis indicated notable changes in hif3α, mhcII, abcb1, mx, and tnfα genes in different fish organs on the CVP diet. In the head kidney, gene expression variations were observed following challenges with A. hydrophila or poly I:C, with higher peak values seen in fish injected with poly I:C. Moreover, c3 mRNA levels were significantly up-regulated in the CVP group 72 h post-A. hydrophila challenge. To conclude, incorporating C. fusca with V. proteolyticus in C. labrosus diet affected the microbial species composition in the intestine while preserving its functionality. In terms of gene expression, the combined diet effectively regulated the transcription of stress and immune-related genes, suggesting potential enhancement of fish resistance against stress and infections.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Álvarez-Torres
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
- Unidad de Bioinformática–SCBI, Parque Tecnológico, Universidad de Málaga, 29590 Málaga, Spain
| | - Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Félix L. Figueroa
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Gabriel Acién
- Departamento de Ingeniería Química, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Eduardo Martínez-Manzanares
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Roberto T. Abdala-Díaz
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Béjar
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Salvador Arijo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
3
|
Messina M, Iacumin L, Pascon G, Tulli F, Tibaldi E, Cardinaletti G. Effect of feed restriction and refeeding on body condition, digestive functionality and intestinal microbiota in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:169-189. [PMID: 36680627 PMCID: PMC9935662 DOI: 10.1007/s10695-023-01170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well's fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes' specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.
Collapse
Affiliation(s)
- Maria Messina
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Francesca Tulli
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| |
Collapse
|
4
|
ELbialy ZI, Atef E, Al-Hawary II, Salah AS, Aboshosha AA, Abualreesh MH, Assar DH. Myostatin-mediated regulation of skeletal muscle damage post-acute Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1-17. [PMID: 36622623 DOI: 10.1007/s10695-022-01165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study focuses on the relationship between myostatin (MyoS), myogenin (MyoG), and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis for muscle growth and histopathological changes in muscle after an Aeromonas hydrophila infection. A total number of 90 Nile tilapia (55.85 g) were randomly allocated into two equal groups of three replicates each. The first group was an uninfected control group that was injected intraperitoneally (ip) with 0.2 ml phosphate buffer saline (PBS), while the second group was injected ip with 0.2 ml (1.3 × 108 CFU/ml) Aeromonas hydrophila culture suspension. Sections of white muscle and liver tissues were taken from each group 24 h, 48 h, 72 h, and 1 week after infection for molecular analysis and histopathological examination. The results revealed that with time progression, the severity of muscle lesions increased from edema between bundles and mononuclear inflammatory cell infiltration 24 h post-challenge to severe atrophy of muscle bundles with irregular and curved fibers with hyalinosis of the fibers 1 week postinfection. The molecular analysis showed that bacterial infection was able to induce the muscle expression levels of GH with reduced ILGF-1, MyoS, and MyoG at 24 h postinfection. However, time progression postinfection reversed these findings through elevated muscle expression levels of MyoS with regressed expression levels of muscle GH, ILGF-1, and MyoG. There have been no previous reports on the molecular expression analysis of the aforementioned genes and muscle histopathological changes in Nile tilapia following acute Aeromonas hydrophila infection. Our findings, collectively, revealed that the up-and down-regulation of the myostatin signaling is likely to be involved in the postinfection-induced muscle wasting through the negative regulation of genes involved in muscle growth, such as GH, ILGF-1, and myogenin, in response to acute Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus.
Collapse
Affiliation(s)
- Zizy I ELbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Eman Atef
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ibrahim I Al-Hawary
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Ali A Aboshosha
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Muyassar H Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University (KAU), Jeddah, 21589, Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
5
|
Association study between relative expression levels of eight genes and growth rate in Hungarian common carp ( Cyprinus carpio). Saudi J Biol Sci 2022; 29:630-639. [PMID: 35002460 PMCID: PMC8716967 DOI: 10.1016/j.sjbs.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
One of the most important issues in improving the competitiveness of the fish production sector is to improve the growth rate of fish. The genetic background to this trait is at present poorly understood. In this study, we compared the relative gene expression levels of the Akt1s1, FGF, GH, IGF1, MSTN, TLR2, TLR4 and TLR5 genes in blood in groups of common carps (Cyprinus carpio), which belonged to different growth types and phenotypes. Fish were divided into groups based on growth rate (normal group: n = 6; slow group: n = 6) and phenotype (scaled group: n = 6; mirror group: n = 6). In the first 18 weeks, we measured significant differences (p < 0.05) between groups in terms of body weight and body length. Over the next 18 weeks, the fish in the slow group showed more intense development. In the same period, the slow group was characterized by lower expression levels for most genes, whereas GH and IGF1 mRNA levels were higher compared to the normal group. We found that phenotype was not a determining factor in differences of relative expression levels of the genes studied.
Collapse
|
6
|
Zarantoniello M, Bortoletti M, Olivotto I, Ratti S, Poltronieri C, Negrato E, Caberlotto S, Radaelli G, Bertotto D. Salinity, Temperature and Ammonia Acute Stress Response in Seabream ( Sparus aurata) Juveniles: A Multidisciplinary Study. Animals (Basel) 2021; 11:E97. [PMID: 33419050 PMCID: PMC7825456 DOI: 10.3390/ani11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the acute response of gilthead seabream (Sparus aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn), heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immunohistochemistry. In all the stress conditions, a significant increase in cortisol levels was observed reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers, igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at 60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were characterized by a significantly higher gr gene expression respect to the control one. Immunostaining for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead seabream juveniles.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Stefano Ratti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (M.Z.); (I.O.); (S.R.)
| | - Carlo Poltronieri
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Elena Negrato
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Stefano Caberlotto
- Valle Ca’ Zuliani Società Agricola Srl, I-34074 Monfalcone, Gorizia, Italy;
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy; (M.B.); (C.P.); (E.N.); (D.B.)
| |
Collapse
|
7
|
Ontogeny of Expression and Activity of Digestive Enzymes and Establishment of gh/ igf1 Axis in the Omnivorous Fish Chelon labrosus. Animals (Basel) 2020; 10:ani10050874. [PMID: 32443440 PMCID: PMC7278486 DOI: 10.3390/ani10050874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Thick-lipped grey mullet (Chelon labrosus) feeds on the lowest trophic levels during adult stages, for which it is considered a viable candidate for an economically and environmentally sustainable aquaculture. Similar to most of marine fish species, C. labrosus produce a large number of eggs, leading to morphologically and anatomically larvae that are not completely mature and have to pass through substantial differentiation and development in their functional systems to acquire adult features. Therefore, the study of the development of digestive tract and of the growth regulation can provide useful information to adapt the feeding protocols and rearing conditions to the physiological requirements at each stage. This work aimed to evaluate the early ontogeny of key digestive enzymes and somatotropic factors at biochemical and/or transcriptional levels. Our results evidenced that maturation of the digestive system and acquisition of the adult mode of digestion occurs around 60 to 70 days post hatch (dph), when starch or other low-cost carbohydrate-based compounds could be used in formulated diets at increasing levels. Furthermore, our results implied an independent expression of the studied somatotropic genes during the first 40 dph and establishment of a functional growth hormone/insulin-like growth factor 1 axis from 50 dph onward. Abstract Thick-lipped grey mullet (Chelon labrosus) is a candidate for sustainable aquaculture due to its omnivorous/detritivorous feeding habit. This work aimed to evaluate its digestive and growth potentials from larval to early juvenile stages. To attain these objectives the activity of key digestive enzymes was measured from three until 90 days post hatch (dph). Expression of genes involved in digestion of proteins (try2, ctr, pga2, and atp4a), carbohydrates (amy2a), and lipids (cel and pla2g1b), together with two somatotropic factors (gh and igf1) were also quantified. No chymotrypsin or pepsin activities were detected. While specific activity of trypsin and lipase were high during the first 30 dph and declined afterward, amylase activity was low until 57 dph and increased significantly beyond that point. Expression of try2, ctr, amy2a, and cel increased continuously along development, and showed a peak at the end of metamorphosis. Expression of pla2g1b, pga2 and atp4a increased until the middle of metamorphosis and decreased afterwars. Most of these trends contrast the usual patterns in carnivorous species and highlight the transition from larvae, with high protein requirements, to post-larvae/juvenile stages, with omnivorous/detritivorous feeding preferences. Somatotropic genes, gh and igf1, showed approximately inverse expression patterns, suggesting the establishment of the Gh/Igf1 axis from 50 dph.
Collapse
|
8
|
Long L, Zhang H, Ni Q, Liu H, Wu F, Wang X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:25-34. [PMID: 30738212 DOI: 10.1016/j.cbpc.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/25/2023]
Abstract
The present study was to investigate the effects of stocking density on the welfare of juvenile Chinese sturgeon (Acipenser sinensis) cultured in a recirculating aquaculture system (RAS) for three months. Fish (average weight 760.86 g) were reared in triplicate under three densities: low density (4.80 kg m-2), medium density (8.99 kg m-2), and high density (12.68 kg m-2). The results showed that the 12.68 kg m-2 treatment significantly suppressed fish growth, gene expression of glutathione-s-transferase (GST), and enhanced serum adrenocorticotropic hormone (ACTH), cortisol, glucose, lactate levels, and the heat shock protein 70 (HSP70) mRNA level (P < 0.05). Additionally, the 12.68 kg m-2 treatment significantly decreased serum glutathione peroxidase and superoxide dismutase activities, and increased the formation of malondialdehyde (P < 0.05). Serum immunoglobulin M (IgM), lysozyme, alkaline phosphatase, and acid phosphatase activities showed a significant decline in this group (P < 0.05). Transcriptions of immune-related genes, including lysozyme, hepcidin antimicrobial peptide 1 (HAMP1), tumor necrosis factor-ɑ (TNF-ɑ), interleukin 1β, and interleukin 8 significantly reduced in the 12.68 kg m-2 group (P < 0.05). In the somatotropic axis, both the serum values and gene expressions of growth hormone (GH) and insulin-like growth factor-I (IGF-I) resulted in a down-regulation in the 12.68 kg m-2 group (P < 0.05). Overall, these results suggest that high stocking density could negatively influence the growth, stress, and immune responses of juvenile Chinese sturgeon. Consequently, the appropriate stocking density recommended for culturing juvenile Chinese sturgeon in an RAS is between 4.80 kg m-2 and 8.99 kg m-2.
Collapse
Affiliation(s)
- Lina Long
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
| | - Haigeng Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
| | - Qi Ni
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China.
| | - Huang Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
| | - Fan Wu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
| | - Xiaodong Wang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
| |
Collapse
|
9
|
Pujante IM, Moyano FJ, Martos-Sitcha JA, Mancera JM, Martínez-Rodríguez G. Effect of different salinities on gene expression and activity of digestive enzymes in the thick-lipped grey mullet (Chelon labrosus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:349-373. [PMID: 29147970 DOI: 10.1007/s10695-017-0440-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The effects of different environmental salinities (0, 12, 40, and 55 ppt) on pepsinogen 2 (pga2), trypsinogen 2 (try2), chymotrypsinogen (ctr), and pancreatic alpha-amylase (amy2a) gene expression, and on the total activities of their corresponding enzymes, were assessed in Chelon labrosus juveniles, after their corresponding full-complementary DNA sequences were cloned. Furthermore, the quantitative effect of different salinities on the hydrolysis of feed protein by fish digestive enzymes was evaluated using an in vitro system. Relative pga2 expression levels were significantly higher in animals maintained at 12 ppt, while a significantly higher gene expression level for ctr and try2 was observed at 40 ppt. amy2a gene expression showed its maximum level at 40 ppt and the lowest at 55 ppt. A significant reduction in the activity of amylase with the increase in salinity was observed, whereas the maximum activity for alkaline proteases was observed in individuals maintained at 40 ppt. A negative effect of high salinity on the action of proteases was confirmed by the in vitro assay, indicating a decreased efficiency in the digestive function in C. labrosus when maintained at high environmental salinities. Nevertheless, individuals can live under different environmental salinities, even though gene expression is different and the enzymatic activities are not maintained at the highest studied salinity. Therefore, compensatory mechanisms should be in place. Results are discussed on the light of the importance as a new species for aquaculture.
Collapse
Affiliation(s)
- I M Pujante
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11519, Puerto Real, Cádiz, Spain.
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avenida República Saharaui, 11510, Puerto Real, Cádiz, Spain.
| | - F J Moyano
- Departamento de Biología Aplicada, Escuela Politécnica, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Almería, 04120, La Cañada de San Urbano, Almería, Spain
| | - J A Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), 11519, Puerto Real, Cádiz, Spain
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11519, Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), 11519, Puerto Real, Cádiz, Spain
| |
Collapse
|
10
|
The effect of starvation and re-feeding on vasotocinergic and isotocinergic pathways in immature gilthead sea bream (Sparus aurata). J Comp Physiol B 2017; 187:945-958. [DOI: 10.1007/s00360-017-1064-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
|
11
|
Behavioral responses of zebrafish depend on the type of threatening chemical cues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:895-901. [DOI: 10.1007/s00359-016-1129-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
|
12
|
Jia R, Liu BL, Feng WR, Han C, Huang B, Lei JL. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. FISH & SHELLFISH IMMUNOLOGY 2016; 55:131-139. [PMID: 27235366 DOI: 10.1016/j.fsi.2016.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Fish skin and its mucus provide the first line of defense against chemical, physical and biological stressors, but little is known about the role of skin and its mucus in immune response to crowding stress. In the present study, we investigated the stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Turbot (average weight 185.4 g) were reared for 120 days under three densities: low density (LD), medium density (MD), and high density (HD). After 120 days, fish were weighed and sampled to obtain blood, mucus and skin tissues which were used for analyses of biochemical parameters and genes expression. The results showed HD treatment significantly suppressed growth and enhanced plasma cortisol and glucose levels (P < 0.05). In mucus, the activities of lysozyme (LZM), alkaline phosphatase (ALP) and esterase in HD treatment were lower than LD and MD treatments (P < 0.05) In skin, HD treatment resulted in up-regulation in malondialdehyde (MDA) formation and heat shock protein 70 (HSP 70) mRNA level, and down-regulation in activity of superoxide dismutase (SOD) and the transcriptions of glutathione-s-transferase (GST), interleukin-1β (IL-1β), tumor necrosis factor -α (TNF-α), insulin-like growth factor- (IGF-) and LZM (P < 0.05). Overall, the data suggested that overly high stocking density was a stressor which caused an immunosuppression in skin of turbot. Moreover, this information would help to understand the skin immunity and their relation with stress and disease in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qing Dao 266071, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qing Dao 266071, China.
| | - Wen-Rong Feng
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qing Dao 266071, China
| | - Cen Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qing Dao 266071, China
| | - Ji-Lin Lei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qing Dao 266071, China
| |
Collapse
|