1
|
Yang Z, Yang X, Du J, Wei C, Liu P, Hu J, Bao Z, Qu Z. Comparative Transcriptome Analysis of Hepatopancreas Reveals Sexual Dimorphic Response to Methyl Farnesoate Injection in Litopenaeus vannamei. Int J Mol Sci 2024; 25:8152. [PMID: 39125723 PMCID: PMC11311334 DOI: 10.3390/ijms25158152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Xiaoliu Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Jiahao Du
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Cun Wei
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhe Qu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.Y.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China (C.W.)
| |
Collapse
|
2
|
Takahashi M, Takahashi K, Yamaguchi T, Kohama T, Hosokawa M. Functional roles and localization of hydrolases in the Japanese mitten crab Eriocheir japonica. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110932. [PMID: 38097062 DOI: 10.1016/j.cbpb.2023.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
The Japanese mitten crab Eriocheir japonica inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. Western blot analysis also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The substrate specificity of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester-type compounds.
Collapse
Affiliation(s)
| | | | - Taichi Yamaguchi
- Education and Research Center for Organisms Production, Okayama University of Science, Japan
| | - Takeshi Kohama
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Japan
| | | |
Collapse
|
3
|
Yu X, Zhang M, Liu P, Li J, Gao B, Meng X. The miRNAs let-7b and miR-141 Coordinately Regulate Vitellogenesis by Modulating Methyl Farnesoate Degradation in the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2023; 25:279. [PMID: 38203450 PMCID: PMC10778691 DOI: 10.3390/ijms25010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.
Collapse
Affiliation(s)
- Xuee Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Mengqian Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Zatylny-Gaudin C, Hervé O, Dubos MP, Rabet N, Henry J, Liittschwager K, Fabienne A. Differential analysis of the haemolymph proteome of Carcinus maenas parasitized by Sacculina carcini (Cirripeda, Rhizocephala) reveals potential mechanisms of parasite control. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109064. [PMID: 37689227 DOI: 10.1016/j.fsi.2023.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Sacculina carcini is an endoparasite of the green crab, Carcinus maenas. This parasite induces behavioural changes in its host and affects its metabolism by inhibiting moulting and reproduction. Using a proteomic approach in mass spectrometry, we studied the haemolymph proteomes of healthy and parasitized wild green crabs from Brittany, France to identify proteins that are differentially expressed as a consequence of parasitization. We also investigated specific proteins involved in reproduction, moulting, and immunity. We detected 77 proteins for females and 53 proteins for males that were differentially present between the healthy and parasitized crabs, some of which were sex-specific. Detection of these differentially expressed proteins suggests that the parasite can inhibit and promote different aspects of the immune response of the host. Sacculina appears to inhibit host melanisation for self-protection, while promoting the presence of immune factors, such as antimicrobial peptides to cope with possible bacterial superinfections. Moreover, one protein, juvenile hormone esterase-like carboxylesterase, was 17-times more abundant in parasitized crabs than in healthy crabs and may be responsible for inhibiting moulting and reproduction in parasitized crabs, thus ensuring the success of Sacculina reproduction.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Océane Hervé
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Marie-Pierre Dubos
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Nicolas Rabet
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France.
| | - Joël Henry
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | | | - Audebert Fabienne
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
5
|
Chen T, Diao Y, Xu R, Sheng N, Liu F, Xie Q, Su S, Ma K, Li X. Cloning and expression analysis of juvenile hormone epoxide hydrolase-like ( EsJHEH-like) from Eriocheir sinensis, and its potential roles in methyl farnesoate metabolism. INVERTEBR REPROD DEV 2022. [DOI: 10.1080/07924259.2021.2019843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yingzhu Diao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Na Sheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Keyi Ma
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Li X, Chen T, Xu R, Huang M, Huang J, Xie Q, Liu F, Su S, Ma K. Identification, characterization and mRNA transcript abundance profiles of the carboxylesterase (CXE5) gene in Eriocheir sinensis suggest that it may play a role in methyl farnesoate degradation. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110630. [PMID: 34062270 DOI: 10.1016/j.cbpb.2021.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The sesquiterpenoid methyl farnesoate (MF) is a de-epoxidized form of insect juvenile hormone (JH) III in crustaceans, and its precise titer plays important roles in regulating many critical physiological processes, including reproduction and ovarian maturation. Understanding the synthetic and degradation pathways of MF is equally important for determining how to maintain MF titers at appropriate levels and thus for potential applications in crab aquaculture. Although the synthetic pathway of MF has been well established, little is known about MF degradation. Previous research proposed that specific carboxylesterases (CXEs) that degrade MF in crustaceans are conserved from those of JH III. In this study, we identified a novel Es-CXE5 gene from Eriocheir sinensis. The Es-CXE5 protein contains some conserved motifs, including catalytic triad and oxyanion hole, which are characteristics of the biologically active CXE family. The phylogenetic analysis showed that Es-CXE5 belongs to the hormone/semiochemical processing group of the CXE family. Moreover, Tissue and stage-specific expression results suggested that Es-CXE5 expression in hepatopancreas was highest and associated with the hemolymph MF titer. Furthermore, Es-CXE5 mRNA transcripts were detected in both in vitro and in vivo experiments and ESA experiment in the hepatopancreas and ovary. The results of this study showed that Es-CXE5 mRNA abundance in the hepatopancreas was notably induced by MF addition but had no effect on the ovary. Taken together, our results suggest that Es-CXE5 may degrade MF in the hepatopancreas and may thus be involved in ovarian development in E. sinensis.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Keyi Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
7
|
Lou F, Gao T, Han Z. Identification of putative key genes for thermal adaptation in the Japanese mantis shrimp (Oratosquilla oratoria) through population genomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100828. [PMID: 33838619 DOI: 10.1016/j.cbd.2021.100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Little is known about the mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different habitat temperature. Here, the genome-wide genetic information of three O. oratoria populations were obtained by IIB restriction site-associated DNA (2b-RAD) sequencing and 2403 single-nucleotide polymorphisms (SNPs) were identified. Based on the 2403 SNPs, we found a remarkable genetic differentiation between the Yellow Sea and the East China Sea groups of O. oratoria. Furthermore, 63 SNPs are thought to be associated with different sea temperatures. Based on the 63 SNPs, it is hypothesised that the long-term temperature differences may contribute to the variation of genes associated with multiple biological functions, such as material metabolism, cytoskeleton, cellular processes, inflammatory response and hormonal regulation. This study provides new information for elucidating the molecular mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different temperature.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
8
|
Zhang X, Yuan J, Zhang X, Xiang J, Li F. Genomic Characterization and Expression of Juvenile Hormone Esterase-Like Carboxylesterase Genes in Pacific White Shrimp, Litopenaeus vannamei. Int J Mol Sci 2020; 21:ijms21155444. [PMID: 32751646 PMCID: PMC7432913 DOI: 10.3390/ijms21155444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
The sesquiterpenoid methyl farnesoate (MF), a juvenile hormone (JH) analog, plays important roles in many physiological processes of crustaceans, such as morphogenesis, molting and reproduction. Juvenile hormone esterase-like (JHE-like) carboxylesterase (CXE) is a key enzyme in MF degradation, playing a significant role in regulating MF titer. However, its function is barely known in shrimp. In this study, a total of 21 JHE-like CXEs (LvCXEs) were characterized in Pacific white shrimp Litopenaeus vannamei, based on the full genome and multi-transcriptomic data. LvCXE has a conserved triplet catalytic site (Ser-Glu-His) and a characteristic GxSxG motif. Most LvCXEs were highly expressed in the hepatopancreas, which was the main site for MF degradation. LvCXEs containing a GESAG motif showed a specific expansion in the L. vannamei genome. Those GESAG-containing LvCXEs presented differential expressions at different larvae stages and different molting stages of L. vannamei, which suggested their potential functions in development and molting. Additionally, when the transcription level of CXEs was inhibited, it could lead to failed molt and death of L. vannamei. When we further detected the expression levels of the key ecdysone responsive transcription factors including LvE75, LvBr-C, LvHr3 and LvFtz-f1 after the CXE inhibitor was injected into L. vannamei, they all showed apparent down-regulation. These results suggested that the expansion of LvCXEs in the L. vannamei genome should contribute to the regulation of metamorphosis at larvae stages and frequent molting during the growth of L. vannamei.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.Y.); (X.Z.)
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.Y.); (X.Z.)
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Wei C, Pan L, Zhang X, Xu L, Si L, Tong R, Wang H. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine. FISH & SHELLFISH IMMUNOLOGY 2019; 94:497-509. [PMID: 31541775 DOI: 10.1016/j.fsi.2019.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
As a crucial neuroendocrine-immune factor, dopamine (DA) could regulate the immune system of Litopenaeus vannamei. To understand the immune mechanisms and regulatory pathways of DA in L. vannamei, the transcriptome analysis of hemocytes of L. vannamei with injection of DA (10-6 mol/shrimp) at 3 and 12 h were performed in this study. Moreover, quantitative real-time PCR (qPCR) method was applied to validate the accuracy of transcriptome sequencing and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, 12, and 24 h) after DA injection. The results showed that a total of 51382 unigenes with a N50 length of 2341 bp were generated. And 1397 and 457 DEGs were obtained by comparative transcriptome at 3 and 12h respectively. Moreover, the results of functional annotation and enriched pathway showed that the DEGs were involved in phagosome (ko04145), lysosome (ko04142), Endocytosis (ko04144), and NOD-like receptor signaling pathway (ko04621). Besides, the Pearson's correlation coefficient (R) between transcriptome sequencing and qPCR was 0.845, which confirmed the reliability of the transcriptome sequencing results and the accuracy of assembly. Furthermore, the expression pattern of 15 candidate DEGs, containing 9 up-regulated and 6 down-regulated DEGs at 3 h, indicated the regulation of DA in physiological functions especially in the immune system. Therefore, these results revealed that DA induced the expressions of membrane receptors or proteins, activated intracellular signaling pathways, regulated cellular and humoral immune systems, controlled antioxidation and apoptosis, and was involved in the regulation of neuroendocrine system. These findings are helpful to promote the understanding on the effects of biogenic amines on physiological functions and regulatory networks of crustacean, and offer a substantial material and foundation for researching the immune response of crustacean.
Collapse
Affiliation(s)
- Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lijun Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
10
|
Li G, Qian H. Hydroxymethylation of protein-encoding genes in the testes involved in precocious puberty of Eriocheir sinensis. Gene 2019; 683:18-27. [PMID: 30315924 DOI: 10.1016/j.gene.2018.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
To investigate the possible effects of epigenetic modification of testis protein-encoding genes on precocious puberty of Eriocheir sinensis, we used MeDIP-seq and hMeDIP-seq techniques to compare the methylation and hydroxymethylation of 263 E. sinensis protein-encoding genes known in the NCBI database in precocious testes with those in normally developing testes. The results showed that total methylation level of those genes was lower than their total hydroxymethylation level. Moreover, their total hydroxymethylation level in precocious testes was significantly lower than that in normal testes. In addition, no methylated genes had significant difference, but there were 37 different hydroxymethylated genes (DhMGs) in the precocious testes compared to the normal ones. Among the DhMGs, 21 were hypo-hydroxymethylated and 16 were hyper-hydroxymethylated. The hypo-hydroxymethylated DhMGs were associated with development, cell structural and cytoskeletal proteins, and response to stress. However, the hyper-hydroxymethylated DhMGs included immune-related genes, free radicals removement-related genes, protein folding-related genes, and so on. In addition, some DhMGs were hyper-hydroxymethylated while their homologous DhMGs were hypo-hydroxymethylated. The results of a qRT-PCR assay showed that the expression levels of 5 DhMGs randomly chosen presented a positive correlation with their hydroxymethylation levels. It can be seen that hydroxymethylation might regulate the expression of genes and be involved in precocious puberty to cause high mortality of crabs. Therefore, the hydroxymethylation level of DhMGs may be used as an evaluation index with economically meaningful growth and breeding traits.
Collapse
Affiliation(s)
- Genliang Li
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, People's Republic of China.
| | - Hui Qian
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, People's Republic of China
| |
Collapse
|
11
|
Zhu XJ, Xiong Y, He W, Jin Y, Qian YQ, Liu J, Dai ZM. Molecular cloning and expression analysis of a prawn (Macrobrachium rosenbergii) juvenile hormone esterase-like carboxylesterase following immune challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 80:10-14. [PMID: 29803663 DOI: 10.1016/j.fsi.2018.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Methyl farnesoate (MF), the crustacean juvenile hormone (JH), plays critical roles in various physiological processes in crustaceans. The titer of MF is precisely regulated by specific carboxylesterase. Here, we report for the first time that the cloning and expression analysis of a JH esterase-like carboxylesterase from the prawn Macrobrachium rosenbergii (named as MrCXE). MrCXE contained a 1935-bp open reading frame (ORF) conceptually translated into a 644-amino acids protein. MrCXE protein shared the highest identity (36%) with JH esterase-like carboxylesterase from the swimming crab, Portunus trituberculatus and exhibited the typical motifs of JH esterase-like carboxylesterases. MrCXE was most abundantly expressed in hepatopancreas, the major tissue for MF metabolism. MrCXE was expressed at a low level in gut and was not detected in other tissues. Additionally, MrCXE expression was upregulated in hepatopancreas by eyestalk ablation to increase MF level. Furthermore, the mRNA level of MrCXE was significantly increased in the hepatopancreas when challenged by the bacterial pathogens Aeromonas hydrophila and Vibrio parahaemolyticus. To our knowledge, this is the first report that the JH esterase-like carboxylesterase is involved in the innate immune response of the crustaceans.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yanan Xiong
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Weiran He
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yuting Jin
- College of Life Sciences, China Jiliang University, 310018, Hangzhou, Zhejiang, China
| | - Ye-Qing Qian
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Jun Liu
- College of Life Sciences, China Jiliang University, 310018, Hangzhou, Zhejiang, China.
| | - Zhong-Min Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China.
| |
Collapse
|