1
|
Li Q, Yu H, Li Q. Dual sgRNA-directed tyrosinases knockout using CRISPR/Cas9 technology in Pacific oyster (Crassostrea gigas) reveals their roles in early shell calcification. Gene 2024; 927:148748. [PMID: 38969245 DOI: 10.1016/j.gene.2024.148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Miglioli A, Tredez M, Boosten M, Sant C, Carvalho JE, Dru P, Canesi L, Schubert M, Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: a novel model for developmental studies in mollusks. Development 2024; 151:dev202256. [PMID: 38270401 DOI: 10.1242/dev.202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Marion Tredez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Manon Boosten
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Camille Sant
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Laura Canesi
- Università degli Studi di Genova, Dipartimento di Scienze della Terra dell Ambiente e della Vita (DISTAV), Genova 16132, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| |
Collapse
|
4
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
5
|
Fan X, Wang Y, Tang C, Zhang X, He J, Buttino I, Yan X, Liao Z. Metabolic profiling of Mytilus coruscus mantle in response of shell repairing under acute acidification. PLoS One 2023; 18:e0293565. [PMID: 37889901 PMCID: PMC10610157 DOI: 10.1371/journal.pone.0293565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Mytilus coruscus is an economically important marine bivalve mollusk found in the Yangtze River estuary, which experiences dramatic pH fluctuations due to seasonal freshwater input and suffer from shell fracture or injury in the natural environment. In this study, we used intact-shell and damaged-shell M. coruscus and performed metabolomic analysis, free amino acids analysis, calcium-positive staining, and intracellular calcium level tests in the mantle to investigate whether the mantle-specific metabolites can be induced by acute sea-water acidification and understand how the mantle responds to acute acidification during the shell repair process. We observed that both shell damage and acute acidification induced alterations in phospholipids, amino acids, nucleotides, organic acids, benzenoids, and their analogs and derivatives. Glycylproline, spicamycin, and 2-aminoheptanoic acid (2-AHA) are explicitly induced by shell damage. Betaine, aspartate, and oxidized glutathione are specifically induced by acute acidification. Our results show different metabolic patterns in the mussel mantle in response to different stressors, which can help elucidate the shell repair process under ocean acidification. furthermore, metabolic processes related to energy supply, cell function, signal transduction, and amino acid synthesis are disturbed by shell damage and/or acute acidification, indicating that both shell damage and acute acidification increased energy consumption, and disturb phospholipid synthesis, osmotic regulation, and redox balance. Free amino acid analysis and enzymatic activity assays partially confirmed our findings, highlighting the adaptation of M. coruscus to dramatic pH fluctuations in the Yangtze River estuary.
Collapse
Affiliation(s)
- Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| |
Collapse
|
6
|
Liao Z, Liu F, Wang Y, Fan X, Li Y, He J, Buttino I, Yan X, Zhang X, Shi G. Transcriptomic response of Mytilus coruscus mantle to acute sea water acidification and shell damage. Front Physiol 2023; 14:1289655. [PMID: 37954445 PMCID: PMC10639161 DOI: 10.3389/fphys.2023.1289655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Mytilus coruscus is an economically important marine calcifier living in the Yangtze River estuary sea area, where seasonal fluctuations in natural pH occur owing to freshwater input, resulting in a rapid reduction in seawater pH. In addition, Mytilus constantly suffers from shell fracture or injury in the natural environment, and the shell repair mechanisms in mussels have evolved to counteract shell injury. Therefore, we utilized shell-complete and shell-damaged Mytilus coruscus in this study and performed transcriptomic analysis of the mantle to investigate whether the expression of mantle-specific genes can be induced by acute seawater acidification and how the mantle responds to acute acidification during the shell repair process. We found that acute acidification induced more differentially expressed genes than shell damage in the mantle, and the biomineralization-related Gene Ontology terms and KEGG pathways were significantly enriched by these DEGs. Most DEGs were upregulated in enriched pathways, indicating the activation of biomineralization-related processes in the mussel mantle under acute acidification. The expression levels of some shell matrix proteins and antimicrobial peptides increased under acute acidification and/or shell damage, suggesting the molecular modulation of the mantle for the preparation and activation of the shell repairing and anti-infection under adverse environmental conditions. In addition, morphological and microstructural analyses were performed for the mantle edge and shell cross-section, and changes in the mantle secretory capacity and shell inner film system induced by the two stressors were observed. Our findings highlight the adaptation of M. coruscus in estuarine areas with dramatic fluctuations in pH and may prove instrumental in its ability to survive ocean acidification.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Ge Shi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
7
|
RNAi Silencing of the Biomineralization Gene Perlucin Impairs Oyster Ability to Cope with Ocean Acidification. Int J Mol Sci 2023; 24:ijms24043661. [PMID: 36835072 PMCID: PMC9961701 DOI: 10.3390/ijms24043661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Calcifying marine organisms, including the eastern oyster (Crassostrea virginica), are vulnerable to ocean acidification (OA) because it is more difficult to precipitate calcium carbonate (CaCO3). Previous investigations of the molecular mechanisms associated with resilience to OA in C. virginica demonstrated significant differences in single nucleotide polymorphism and gene expression profiles among oysters reared under ambient and OA conditions. Converged evidence generated by both of these approaches highlighted the role of genes related to biomineralization, including perlucins. Here, gene silencing via RNA interference (RNAi) was used to evaluate the protective role of a perlucin gene under OA stress. Larvae were exposed to short dicer-substrate small interfering RNA (DsiRNA-perlucin) to silence the target gene or to one of two control treatments (control DsiRNA or seawater) before cultivation under OA (pH ~7.3) or ambient (pH ~8.2) conditions. Two transfection experiments were performed in parallel, one during fertilization and one during early larval development (6 h post-fertilization), before larval viability, size, development, and shell mineralization were monitored. Silenced oysters under acidification stress were the smallest, had shell abnormalities, and had significantly reduced shell mineralization, thereby suggesting that perlucin significantly helps larvae mitigate the effects of OA.
Collapse
|
8
|
Yang Z, Sun F, Liao H, Zhang Z, Dou Z, Xing Q, Hu J, Huang X, Bao Z. Genome-wide association study reveals genetic variations associated with ocean acidification resilience in Yesso scallop Patinopecten yessoensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105963. [PMID: 34547702 DOI: 10.1016/j.aquatox.2021.105963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA), which refers to a gradual decrease in seawater pH due to the absorption of atmospheric carbon dioxide, profoundly affects the growth, development and survival of bivalves. Relatively limited studies have assessed the resilience of bivalve to OA. In the present study, Patinopecten yessoensis, an economically and ecologically significant species, were exposed to low pH (pH = 7.5) for 4 weeks. Forty-seven scallops that died in the first week were considered pH-sensitive population, and 20 that were alive at the end of the experiment were considered pH-tolerant population. A genome-wide association study was conducted to identify the genomic loci associated the resilience of P. yessoensis to OA. Twenty-one single nucleotide polymorphisms were significantly associated with resilience, which were distributed in 11 linkage groups. Within the linkage disequilibrium block region (± 300 kb) surrounding the 21 SNPs, 193 candidate genes were successfully identified. Particularly, five associated SNPs were directly located on five genes, including SP24, CFDH, 5HTR3, HSDL1 and ZFP346. The GO enrichment and KEGG pathway analyses showed that the molecular response of P. yessoensis to OA mainly involved neural signal transmission, energy metabolism and redox reaction. Candidate genes were expressed during larval development and in adult tissues. Furthermore, the expression of 30 candidate genes changed significantly under low pH stress in the mantle. Our results reveal certain SNPs and candidate genes that could elucidate the different responses of P. yessoensis to OA. The genetic variations indicated molecular resilience in P. yessoensis populations, which may enable adaptation to future acidification stress.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanhua Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zheng Dou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| |
Collapse
|
9
|
Zhu Y, Li Q, Yu H, Liu S, Kong L. Shell Biosynthesis and Pigmentation as Revealed by the Expression of Tyrosinase and Tyrosinase-like Protein Genes in Pacific Oyster (Crassostrea gigas) with Different Shell Colors. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:777-789. [PMID: 34490547 DOI: 10.1007/s10126-021-10063-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The widely recognized color polymorphisms of molluscan shell have been appreciated for hundreds of years by collectors and scientists, while molecular mechanisms underlying shell pigmentation are still poorly understood. Tyrosinase is a key rate-limiting enzyme for the biosynthesis of melanin. Here, we performed an extensive multi-omics data mining and identified two tyrosinase genes, including tyrosinase and tyrosinase-like protein 2 (Tyr and Typ-2 respectively), in the Pacific oyster Crassostrea gigas, and investigated the expression patterns of tyrosinase during adults and embryogenesis in black and white shell color C. gigas. Tissue expression analysis showed that two tyrosinase genes were both specifically expressed in the mantle, and the expression levels of Tyr and Typ-2 in the edge mantle were significantly higher than that in the central mantle. Besides, Tyr and Typ-2 genes were black shell-specific compared with white shell oysters. In situ hybridization showed that strong signals for Tyr were detected in the inner surface of the outer fold, whereas positive signals for Typ-2 were mainly localized in the outer surface of the outer fold. In the embryos and larvae, the high expression of Tyr mRNA was detected in eyed-larvae, while Typ-2 mRNA was mainly expressed at the trochophore and early D-veliger. Furthermore, the tyrosinase activity in the edge mantle was significantly higher than that in the central mantle. These findings indicated that Tyr gene may be involved in shell pigmentation, and Typ-2 is more likely to play critical roles not only in the formation of shell prismatic layer but also in shell pigmentation. In particular, Typ-2 gene was likely to involve in the initial non-calcified shell of trochophores. The work provides valuable information for the molecular mechanism study of shell formation and pigmentation in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
10
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
11
|
Liu J, Sun X, Nie H, Kifat J, Li J, Huo Z, Bi J, Yan X. Genome-wide identification and expression profiling of TYR gene family in Ruditapes philippinarum under the challenge of Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100788. [PMID: 33516925 DOI: 10.1016/j.cbd.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Tyrosinase (EC1.14.18.1, TYR) is also called phenol oxidase, is not only involved in pigmentation but also plays an important role in modulating innate immunity in invertebrates. Tyrosinase is a copper containing metalloenzyme. The tyrosinase protein has two copper binding sites and three conserved histidines. In this study, 21 tyrosinase genes (RpTYR) were obtained from the whole genome of Ruditapes philippinarum. Their open reading frames were from 951 to 5424 aa, the range of predicted relative molecular weight from 36.72 to 203.81 kDa, and the range of isoelectric point from 4.72 to 9.88. Transcriptome analysis showed that RpTYR gene was expressed specifically in different developmental stages, adult tissues, four strains and two groups with different shell colors. Besides, the expression profiles of 21 RpTYRs were investigated against the immune response of R. philippinarum to a Vibrio challenge. The qPCR results showed that RpTYRs were involved in the immune response of R. philippinarum after Vibrio anguillarum challenge. This study provides preliminary evidence that the tyrosinases genes are involved in the immune defense and the potential immune function of R. philippinarum. Overall, these findings suggested that the expansion of TYR genes may play vital roles in larval development, the formation of shell color pattern, and immune response in R. philippinarum.
Collapse
Affiliation(s)
- Jie Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiaotong Sun
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Jahan Kifat
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinlong Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinhong Bi
- Rongcheng Marine Economic Development Center, 264300 Rongcheng, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
12
|
Wu M, Chen X, Cui K, Li H, Jiang Y. Pigmentation formation and expression analysis of tyrosinase in Siniperca chuatsi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1279-1293. [PMID: 32185567 DOI: 10.1007/s10695-020-00788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Animal pigmentation primarily depends on the presence and mixing ratio of chromatophores, functioning in animal survival and communication. For the benthic and carnivorous Siniperca chuatsi, pigmentation pattern is key to concealment and predation. In this study, the formation, distribution, and main pattern of chromatophores were observed in the embryos, larvae, skins, and visceral tissues from S. chuatsi. Melanophores were firstly visualized in the yolk sac at segmentation stage, and then they were migrated to the whole body and further clustered into the black stripes, bands, and patches. In adult S. chuatsi, the head, black band, and body side skins mainly contained melanophores, showing as deep or light black. The abdomen skin mainly contained iridophores, showing as silvery. In the eye, the pigment layers were located in the epithelial layers of iris and retina and shown as black. Then, the pigmentation-related gene, tyrosinase gene from S. chuatsi (Sc-tyr) was analyzed by bioinformatics and quantitative methods. The Sc-tyr gene encoded a protein with 540 amino acids (Sc-TYR). The Sc-TYR contained two copper ion binding sites, which were coordinated by six conserved histidines (H182, H205, H214, H366, H370, H393) and necessary for catalytic activity. The Sc-TYR was well conserved compared with TYR of various species with higher degree of sequence similarity with other fishes (77.6-98.3%). The qRT-PCR test showed that the Sc-tyr mRNA reached the peak value at segmentation stage in the embryo development, the black skins displayed a higher expression level than that in silvery skin, and the eye had the highest expression level compared with other tissues. Further research on enzyme activity showed that the expression patterns of tyrosinase activity were similar to that of the Sc-tyr mRNA. Comparing with the results of molecular and phenotype, it was found that the temporal and spatial distributions of tyrosinase corresponded well with changes in pigmentation patterns and the intensity of skin melanization. This study initially explored the pigmentation formation and tyrosinase expression, which served as a foundation for further insight into the genetics mechanism of body color formation in S. chuatsi.
Collapse
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Kai Cui
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| |
Collapse
|
13
|
Ren G, Chen C, Jin Y, Zhang G, Hu Y, Shen W. A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii. Front Physiol 2020; 11:100. [PMID: 32153421 PMCID: PMC7045039 DOI: 10.3389/fphys.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although tyrosinases have been speculated to participate in the shell formation of mollusks, there is still a lack of experimental evidence to support this assumption. In this study, a novel tyrosinase designated HcTyr2 was isolated and characterized from the freshwater mussel Hyriopsis cumingii. The change in HcTyr2 mRNA expression during the process of embryonic development was detected by real-time quantitative PCR. The result showed that the expression of HcTyr2 mRNA was significantly upregulated at the stages of gastrulae and unmatured glochidia (P < 0.05), suggesting that this gene might fundamentally participate in the biogenesis and growth of the initial shell. Meanwhile, the upregulation of HcTyr2 mRNA at the stages of shell regeneration 24 h and 9 days after shell notching in the mantle edge (P < 0.05) implied that it might play an important role in shell periostracum and nacre formation by mediating the cross-linking of quinoproteins to promote the maturity of organic matrix. Additionally, the knockdown of HcTyr2 mRNA by RNA interference resulted in not only the suppression of periostracum growth but also structural disorder of nacre aragonite tablets, as detected by scanning electron microscopy. These results suggested that HcTyr2 might regulate the growth of shell by its oxidative ability to transform soluble matrix proteins into insoluble matrix proteins, then promoting the maturity of the shell organic framework in H. cumingii. In general, our results suggested the importance of HcTyr2 in the shell formation and regeneration of H. cumingii.
Collapse
Affiliation(s)
- Gang Ren
- School of Life Sciences, Shaoxing University, Shaoxing, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Yefei Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Genfang Zhang
- College of Agriculture and Bioengineering, Jinhua Polytechnic, Jinhua, China
| | - Yiwei Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenying Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
14
|
Jiang K, Jiang L, Nie H, Huo Z, Yan X. Molecular cloning and expression analysis of tyrosinases ( tyr) in four shell-color strains of Manila clam Ruditapes philippinarum. PeerJ 2020; 8:e8641. [PMID: 32110498 PMCID: PMC7032058 DOI: 10.7717/peerj.8641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
The Manila clam (Ruditapes philippinarum) is an economically important molluscan bivalve with variation in pigmentation frequently observed in the shell. In nature, tyrosinase is widely distributed in invertebrates and vertebrates, and plays a crucial role in a variety of physiological activities. In this study, a tyrosinase gene (tyr 9) was cloned and the expression level of tyr genes (tyr 6, tyr 9, tyr 10, and tyr 11) were investigated in different shell colors. Quantitative real-time PCR showed that tyr genes were significantly expressed in the mantle, a shell formation and pigmentation-related tissue. Moreover, the expression pattern of the tyr genes in the mantle of different shell-color strains was different, suggesting that tyrosinases might be involved in different shell-color formation. In addition, the expression profile of tyr 6, tyr 9, tyr 10, and tyr 11 genes were detected at different early developmental stages and the expression level varied with embryonic and larval growth. RNA interference (RNAi) results showed that the expression level of tyr 9 in the RNAi group was significantly down-regulated compared to control and negative control groups, indicating that Rptyr 9 might participate in shell-color formation. Our results indicated that tyr genes were likely to play vital roles in the formation of shell and shell-color in R. philippinarum.
Collapse
Affiliation(s)
- Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
15
|
Tan K, Zheng H. Ocean acidification and adaptive bivalve farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134794. [PMID: 31715479 DOI: 10.1016/j.scitotenv.2019.134794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Multiple lines of evidence, ranging from time series field observations to climate change stimulation experiments demonstrate the negative effects of global warming and ocean acidification (OA) on bivalve molluscs. The impact of global warming on bivalve aquaculture has recently been reviewed. However, the impact of OA on bivalve aquaculture has received relatively less attention. Although there are many reports on the effects of OA on bivalves, this information is poorly organized and the connection between OA and bivalve aquaculture is unclear. Therefore, understanding the potential impact of acidification on ecosystems and bivalve aquaculture is of prime importance. Here, we provide a comprehensive scientific review of the impact of OA on bivalves and propose mitigation measures for future bivalve farming. This information will help to establish aquaculture and fisheries management plans to be implemented in commercial fisheries and nature conservation. In general, scientific evidence suggests that OA threatens bivalves by diminishing the availability of carbonate minerals, which may adversely affect the development of early life stages, calcification, growth, byssus attachment and survival of bivalves. The Integrated multi-trophic aquaculture (IMTA) approach is a useful method in slowing the effects of climate change, thereby providing longer adaptation period for bivalves to changing ocean conditions. However, for certain regions that experience intense OA effects or for certain bivalve species that have much longer generational time, IMTA alone may not be sufficient to protect bivalves from the adverse effects of climate change. Therefore, it is highly recommended to combine IMTA and genetic breeding methods to facilitate transgenerational acclimation or evolution processes to enhance the climate resilience of bivalves.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
16
|
Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 2019; 10:5821. [PMID: 31862880 PMCID: PMC6925106 DOI: 10.1038/s41467-019-13767-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Global climate change has intensified the need to assess the capacity for natural populations to adapt to abrupt shifts in the environment. Reductions in seawater pH constitute a conspicuous global change stressor that is affecting marine ecosystems globally. Here, we quantify the phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the Mediterranean mussel, Mytilus galloprovincialis. We reared a genetically diverse larval population in two pH treatments (pHT 8.1 and 7.4) and tracked changes in the shell-size distribution and genetic variation through settlement. Additionally, we identified differences in the signatures of selection on shell growth in each pH environment. Both phenotypic and genetic data show that standing variation can facilitate adaptation to declines in seawater pH. This work provides insight into the processes underpinning rapid evolution, and demonstrates the importance of maintaining variation within natural populations to bolster species’ adaptive capacity as global change progresses. Reductions in seawater pH are affecting marine ecosystems globally. Here, the authors describe phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the mussel Mytilus galloprovincialis, and suggest that standing variation within natural populations plays an important role in bolstering species’ adaptive capacity to global change.
Collapse
Affiliation(s)
- M C Bitter
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL, 60637, USA.
| | - L Kapsenberg
- Department of Marine Biology and Oceanography, CSIC Institute of Marine Sciences, Passeig Marítim de la Barceloneta, 37-49, E-08003, Barcelona, Spain
| | - J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France.,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillame, 75007, Paris, France
| | - C A Pfister
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Miglioli A, Dumollard R, Balbi T, Besnardeau L, Canesi L. Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase. Proc Biol Sci 2019; 286:20192043. [PMID: 31771478 DOI: 10.1098/rspb.2019.2043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bivalve biomineralization is a highly complex and organized process, involving several molecular components identified in adults and larval stages. However, information is still scarce on the ontogeny of the organic matrix before calcification occurs. In this work, first shell formation was investigated in the mussel Mytilus galloprovincialis. The time course of organic matrix and CaCO3 deposition were followed at close times post fertilization (24, 26, 29, 32, 48 h) by calcofluor and calcein staining, respectively. Both components showed an exponential trend in growth, with a delay between organic matrix and CaCO3 deposition. mRNA levels of genes involved in matrix deposition (chitin synthase; tyrosinase- TYR) and calcification (carbonic anhydrase; extrapallial protein) were quantified by qPCR at 24 and 48 hours post fertilization (hpf) with respect to eggs. All transcripts were upregulated across early development, with TYR showing highest mRNA levels from 24 hpf. TYR transcripts were closely associated with matrix deposition as shown by in situ hybridization. The involvement of tyrosinase activity was supported by data obtained with the enzyme inhibitor N-phenylthiourea. Our results underline the pivotal role of shell matrix in driving first CaCO3 deposition and the importance of tyrosinase in the formation of the first shell in M. galloprovincialis.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.,Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - R Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - L Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
18
|
Zimmer AM, Pan YK, Chandrapalan T, Kwong RWM, Perry SF. Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing? ACTA ACUST UNITED AC 2019; 222:222/7/jeb175737. [PMID: 30948498 DOI: 10.1242/jeb.175737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss-of-function technologies, such as morpholino- and RNAi-mediated gene knockdown, and TALEN- and CRISPR/Cas9-mediated gene knockout, are widely used to investigate gene function and its physiological significance. Here, we provide a general overview of the various knockdown and knockout technologies commonly used in comparative physiology and discuss the merits and drawbacks of these technologies with a particular focus on research conducted in zebrafish. Despite their widespread use, there is an ongoing debate surrounding the use of knockdown versus knockout approaches and their potential off-target effects. This debate is primarily fueled by the observations that, in some studies, knockout mutants exhibit phenotypes different from those observed in response to knockdown using morpholinos or RNAi. We discuss the current debate and focus on the discrepancies between knockdown and knockout phenotypes, providing literature and primary data to show that the different phenotypes are not necessarily a direct result of the off-target effects of the knockdown agents used. Nevertheless, given the recent evidence of some knockdown phenotypes being recapitulated in knockout mutants lacking the morpholino or RNAi target, we stress that results of knockdown experiments need to be interpreted with caution. We ultimately argue that knockdown experiments should not be discontinued if proper control experiments are performed, and that with careful interpretation, knockdown approaches remain useful to complement the limitations of knockout studies (e.g. lethality of knockout and compensatory responses).
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Yihang K Pan
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
19
|
De Wit P, Durland E, Ventura A, Langdon CJ. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms. BMC Genomics 2018; 19:160. [PMID: 29471790 PMCID: PMC5824581 DOI: 10.1186/s12864-018-4519-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022] Open
Abstract
Background Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO2-acidified seawater to identify genes correlated with initial shell deposition. Results By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Conclusions Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification. Electronic supplementary material The online version of this article (10.1186/s12864-018-4519-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre De Wit
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden.
| | - Evan Durland
- Department of Fisheries and Wildlife and Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Alexander Ventura
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - Chris J Langdon
- Department of Fisheries and Wildlife and Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| |
Collapse
|
20
|
Liu W, Yu Z, Huang X, Shi Y, Lin J, Zhang H, Yi X, He M. Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata. MARINE ENVIRONMENTAL RESEARCH 2017; 130:174-180. [PMID: 28760624 DOI: 10.1016/j.marenvres.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 05/27/2023]
Abstract
In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2-42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40).
Collapse
Affiliation(s)
- Wenguang Liu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Zonghe Yu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xiande Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yu Shi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jianshi Lin
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xuejie Yi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Maoxian He
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China.
| |
Collapse
|