1
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
2
|
Chowdhury S, Saikia SK. Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review. Zebrafish 2022; 19:165-176. [PMID: 36049069 DOI: 10.1089/zeb.2021.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
Collapse
Affiliation(s)
- Sabarna Chowdhury
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
3
|
Fago A. New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates. Acta Physiol (Oxf) 2022; 235:e13841. [PMID: 35548887 PMCID: PMC9287066 DOI: 10.1111/apha.13841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Hypoxic environments pose a severe challenge to vertebrates and even short periods of oxygen deprivation are often lethal as they constrain aerobic ATP production. However, a few ectotherm vertebrates are capable of surviving long‐term hypoxia or even anoxia with little or no damage. Among these, freshwater turtles and crucian carp are the recognized champions of anoxia tolerance, capable of overwintering in complete oxygen deprivation for months at freezing temperatures by entering a stable hypometabolic state. While all steps of the oxygen cascade are adjusted in response to oxygen deprivation, this review draws from knowledge of freshwater turtles and crucian carp to highlight mechanisms regulating two of these steps, namely oxygen transport in the blood and oxygen utilization in mitochondria during three sequential phases: before anoxia, when hypoxia develops, during anoxia, and after anoxia at reoxygenation. In cold hypoxia, reduced red blood cell concentration of ATP plays a crucial role in increasing blood oxygen affinity and/or reducing oxygen unloading to tissues, to adjust aerobic metabolism to decrease ambient oxygen. In anoxia, metabolic rewiring of oxygen utilization keeps largely unaltered NADH/NAD+ ratios and limits ADP degradation and succinate buildup. These critical adjustments make it possible to restart mitochondrial respiration and energy production with little generation of reactive oxygen species at reoxygenation when oxygen is again available. Inhibition of key metabolic enzymes seems to play crucial roles in these responses, in particular mitochondrial complex V, although identifying the nature of such inhibition(s) in vivo remains a challenge for future studies.
Collapse
Affiliation(s)
- Angela Fago
- Department of Biology Aarhus University Aarhus Denmark
| |
Collapse
|
4
|
Mandic M, Flear K, Qiu P, Pan YK, Perry SF, Gilmour KM. Aquatic surface respiration improves survival during hypoxia in zebrafish ( Danio rerio) lacking hypoxia-inducible factor 1-α. Proc Biol Sci 2022; 289:20211863. [PMID: 35016541 PMCID: PMC8753152 DOI: 10.1098/rspb.2021.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Hypoxia-inducible factor 1-α (Hif-1α), an important transcription factor regulating cellular responses to reductions in O2, previously was shown to improve hypoxia tolerance in zebrafish (Danio rerio). Here, we examined the contribution of Hif-1α to hypoxic survival, focusing on the benefit of aquatic surface respiration (ASR). Wild-type and Hif-1α knockout lines of adult zebrafish were exposed to two levels (moderate or severe) of intermittent hypoxia. Survival was significantly compromised in Hif-1α knockout zebrafish prevented from accessing the surface during severe (16 mmHg) but not moderate (23 mmHg) hypoxia. When allowed access to the surface in severe hypoxia, survival times did not differ between wild-type and Hif-1α knockouts. Performing ASR mitigated the negative effects of the loss of Hif-1α with the knockouts initiating ASR at a higher PO2 threshold and performing ASR for longer than wild-types. The loss of Hif-1α had little impact on survival in fish between 1 and 5 days post-fertilization, but as the larvae aged, their reliance on Hif-1α increased. Similar to adult fish, ASR compensated for the loss of Hif-1α on survival. Together, these results demonstrate that age, hypoxia severity and, in particular, the ability to perform ASR significantly modulate the impact of Hif-1α on survival in hypoxic zebrafish.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, Davis, CA 95616, USA
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kaitlyn Flear
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Pearl Qiu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Yihang K. Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| |
Collapse
|
5
|
Thoral E, Farhat E, Roussel D, Cheng H, Guillard L, Pamenter ME, Weber JM, Teulier L. Different patterns of chronic hypoxia lead to hierarchical adaptative mechanisms in goldfish metabolism. J Exp Biol 2021; 225:273673. [PMID: 34881781 DOI: 10.1242/jeb.243194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
Some hypoxia-tolerant species, such as goldfish, experience intermittent and severe hypoxia in their natural habitat causing them to develop multiple physiological adaptations. However, in fish, the metabolic impact of regular hypoxic exposure on swimming performance in normoxia is less well understood. Therefore, we experimentally tested whether chronic exposure to constant (30 days at 10% air saturation) or intermittent hypoxia (3hrs in normoxia and 21hrs in hypoxia, 5 days a week) would result in similar metabolic and swimming performance benefits after reoxygenation. Moreover, half of the normoxic and intermittent hypoxic fish were put on a 20-day normoxic training regime. After these treatments, metabolic rate (standard and maximum metabolic rates: SMR and MMR) and swimming performance (critical swimming speed [Ucrit] and cost of transport [COT]) were assessed. In addition, enzyme activities (citrate synthase CS, cytochrome c oxidase COX and lactate dehydrogenase LDH) and mitochondrial respiration were examined in red muscle fibres. We found that acclimation to constant hypoxia resulted in (1) metabolic suppression (-45% SMR, and -27% MMR), (2) increased anaerobic capacity (+117% LDH), (3) improved swimming performance (+80% Ucrit, -71% COT) and (4) no changes at the mitochondrial level. Conversely, the enhancement of swimming performance was reduced following acclimation to intermittent hypoxia (+45% Ucrit, -41% COT), with a 55% decrease in aerobic scope, despite a significant increase in oxidative metabolism (+201% COX, +49% CS). This study demonstrates that constant hypoxia leads to the greatest benefit in swimming performance and that mitochondrial metabolic adjustments only provide minor help in coping with hypoxia.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Elie Farhat
- Biology Department, University of Ottawa, Ottawa, ON, Canada
| | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Hang Cheng
- Biology Department, University of Ottawa, Ottawa, ON, Canada
| | - Ludovic Guillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
6
|
Bautista NM, Petersen EE, Jensen RJ, Natarajan C, Storz JF, Crossley DA, Fago A. Changes in hemoglobin function and isoform expression during embryonic development in the American alligator, Alligator mississippiensis. Am J Physiol Regul Integr Comp Physiol 2021; 321:R869-R878. [PMID: 34704846 DOI: 10.1152/ajpregu.00047.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.
Collapse
Affiliation(s)
| | | | | | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
7
|
Mandic M, Bailey A, Perry SF. Hypoxia inducible factor 1-α is minimally involved in determining the time domains of the hypoxic ventilatory response in adult zebrafish (Danio rerio). Respir Physiol Neurobiol 2021; 294:103774. [PMID: 34375733 DOI: 10.1016/j.resp.2021.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
In the current study, adult zebrafish (Danio rerio) were exposed to 72 h hypoxia (90 mmHg) to assess the time domains of the hypoxia ventilatory response (HVR) and the consequence on a subsequent more severe (40 mmHg) bout of acute hypoxia. Experiments were performed on wild-type fish and mutants in which one or both paralogs of hypoxia inducible factor-1α (hif-1α) were knocked out. Although there were subtle differences among the wild-type and knockout fish, resting fV was reestablished after 2-8 h of continuous hypoxia in both groups, a striking example of hypoxic ventilatory decline (HVD). When fish were subsequently exposed to more severe hypoxia, a rapid increase in fV was observed, the magnitude of which was independent of genotype or prior exposure history. During recovery, fish that had been exposed to 72 h of 90 mmHg hypoxia exhibited a pronounced undershoot in fV, which was absent in the hif-1α double knockouts. Overall, the results revealed distinct time domains of the HVR in zebrafish that were largely Hif-1α-independent.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada.
| | - Adrian Bailey
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada
| |
Collapse
|
8
|
Bautista NM, Malte H, Natarajan C, Wang T, Storz JF, Fago A. New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. J Exp Biol 2021; 224:271141. [PMID: 34338300 DOI: 10.1242/jeb.242615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.
Collapse
Affiliation(s)
- Naim M Bautista
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tobias Wang
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay F Storz
- School of Biological Sciences , University of Nebraska, Lincoln, NE 68588, USA
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Léger JAD, Athanasio CG, Zhera A, Chauhan MF, Simmons DBD. Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100860. [PMID: 34126312 DOI: 10.1016/j.cbd.2021.100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The incidence of hypoxia in water bodies is increasing more rapidly than aquatic life can adapt. This study aimed to determine the effects of hypoxia on fish physiology, as well as protein expression through proteomics. To do this, 40 rainbow trout were divided into normoxic control (11.5 mg/L dissolved oxygen) and hypoxic treatment (5 mg/L dissolved oxygen) tanks for a period of 7 days. Fish were then anesthetized and blood was sampled. Fish were then euthanized and heart and liver samples were taken. Blood glucose, cortisol and lipid, body and liver mass, fork length, hematocrit and, blood cell counts and global heart methylation were measured. Red blood cell counts were significantly lower, while hematocrit and mean corpuscular volume were significantly higher in the hypoxic treatment. Global DNA methylation was significantly decreased in hypoxic heart tissue. Plasma cortisol and 18:1 monoacylglyerol increased, while 15:0-18:1 phosphatidylethanolamine, and 18:1 lysophosphatidylethanolamine decreased in plasma of rainbow trout under hypoxic conditions. Plasma proteomics revealed 70 significantly altered proteins (p < 0.05) in the hypoxia treatment (Data are available via ProteomeXchange with identifier PXD026589). Many of these molecular changes appear to be related to the observed increase in red blood cell volume and epigenetic modifications, as well as to angiogenesis, lipid, and glucose metabolism. This study highlights a range of cellular and molecular responses in the blood and plasma of freshwater fish that may be phenotypic adaptions to hypoxia, and that could aid in diagnosing the health status of wild fish populations using several, potential, discovered biomarkers.
Collapse
Affiliation(s)
- Jessica A D Léger
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Camila G Athanasio
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| | - Aaleen Zhera
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Mohammed Faiz Chauhan
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Denina B D Simmons
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| |
Collapse
|
10
|
Mandic M, Pan YK, Gilmour KM, Perry SF. Relationships between the peak hypoxic ventilatory response and critical O 2 tension in larval and adult zebrafish ( Danio rerio). J Exp Biol 2020; 223:jeb213942. [PMID: 32139474 DOI: 10.1242/jeb.213942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/27/2020] [Indexed: 08/26/2023]
Abstract
Fish increase ventilation during hypoxia, a reflex termed the hypoxic ventilatory response (HVR). The HVR is an effective mechanism to increase O2 uptake, but at a high metabolic cost. Therefore, when hypoxia becomes severe enough, ventilation declines, as its benefit is diminished. The water oxygen partial pressure (PwO2 ) at which this decline occurs is expected to be near the critical PwO2 (Pcrit), the PwO2 at which O2 consumption begins to decline. Our results indicate that in zebrafish (Danio rerio), the relationship between peak HVR and Pcrit is dependent on developmental stage. Peak ventilation occurred at PwO2 values higher than Pcrit in larvae, but at a PwO2 significantly lower than Pcrit in adults. Larval zebrafish use cutaneous respiration to a greater extent than branchial respiration and the cost of sustaining the HVR may outweigh the benefit, whereas adult zebrafish, which rely on branchial respiration, may benefit from using HVR at PwO2 below Pcrit.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Yihang K Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
11
|
Fago A, Natarajan C, Pettinati M, Hoffmann FG, Wang T, Weber RE, Drusin SI, Issoglio F, Martí MA, Estrin D, Storz JF. Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO 2. Am J Physiol Regul Integr Comp Physiol 2020; 318:R657-R667. [PMID: 32022587 DOI: 10.1152/ajpregu.00342.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Martín Pettinati
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, Mississippi
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Salvador I Drusin
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Issoglio
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
12
|
Storz JF, Natarajan C, Grouleff MK, Vandewege M, Hoffmann FG, You X, Venkatesh B, Fago A. Oxygenation properties of hemoglobin and the evolutionary origins of isoform multiplicity in an amphibious air-breathing fish, the blue-spotted mudskipper ( Boleophthalmus pectinirostris). ACTA ACUST UNITED AC 2020; 223:jeb.217307. [PMID: 31836650 DOI: 10.1242/jeb.217307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Among the numerous lineages of teleost fish that have independently transitioned from obligate water breathing to facultative air breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here, we examined the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2 affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | | | - Magnus K Grouleff
- Zoophysiology, Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Michael Vandewege
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI-Marine, BGI, Shenzhen 518083, China
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| |
Collapse
|