1
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
2
|
Cabald T, Marie-Magdeleine C, Philibert L, Caradeuc C, Bertho G, Giraud N, Cebrián-Torrejón G, Sylvestre M. Phytochemical Study of the Anthelminthic Potential of Guadeloupean Plant Biodiversity. Pharmaceuticals (Basel) 2024; 17:774. [PMID: 38931441 PMCID: PMC11206802 DOI: 10.3390/ph17060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal parasitism is a major health and welfare problem in ruminants. Synthetic chemical anthelmintic drugs have led to the emergence of resistance in gastrointestinal strongyles, inducing the search for alternatives to control the infections that affect ruminants. The objective of this work was to evaluate the anthelmintic potential of plant extracts against Haemonchus contortus Rudolphi. Three plants of the Guadeloupean biodiversity, Momordica charantia L., Carica papaya L. and Sargassum spp., were selected based on their high polyphenolic content and natural abundance. The phytochemistry of plants was explored, a biological assay against the parasite H. contortus was carried out, and several hypotheses about the way of action were proposed by an innovative electrochemical screening method.
Collapse
Affiliation(s)
- Tressy Cabald
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| | | | | | - Cédric Caradeuc
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Gildas Bertho
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Nicolas Giraud
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| |
Collapse
|
3
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
4
|
Islam MT, Jang NH, Lee HJ. Natural Products as Regulators against Matrix Metalloproteinases for the Treatment of Cancer. Biomedicines 2024; 12:794. [PMID: 38672151 PMCID: PMC11048580 DOI: 10.3390/biomedicines12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers are currently the major cause of mortality in the world. According to previous studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could lead to the onset and progression of cancers. Therefore, regulating the expression and activity of MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers. Various studies have tried to investigate and understand the pathophysiology of cancers to suggest potent treatments. In this review, we summarize how natural products from marine organisms and plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent anticancer agents.
Collapse
Affiliation(s)
- Md. Towhedul Islam
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Nak Han Jang
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Fais G, Casula M, Sidorowicz A, Manca A, Margarita V, Fiori PL, Pantaleo A, Caboni P, Cao G, Concas A. Cultivation of Chroococcidiopsis thermalis Using Available In Situ Resources to Sustain Life on Mars. Life (Basel) 2024; 14:251. [PMID: 38398760 PMCID: PMC10889959 DOI: 10.3390/life14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Valentina Margarita
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pier Luigi Fiori
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
6
|
Rokkarukala S, Cherian T, Ragavendran C, Mohanraju R, Kamaraj C, Almoshari Y, Albariqi A, Sultan MH, Alsalhi A, Mohan S. One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon 2023; 9:e14668. [PMID: 36994394 PMCID: PMC10040709 DOI: 10.1016/j.heliyon.2023.e14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Marine bio-resources are being extensively researched as a priceless supply of substances with therapeutic potential. This work report the first time attempt made towards the green synthesis of gold nanoparticles (AuNPs) using the aqueous extract of marine soft coral (SCE), Sarcophyton crassocaule. The synthesis was conducted under optimized conditions and the visual coloration of reaction mixture changed from yellowish to ruby red at 540 nm. The electron microscopic (TEM, SEM) studies exhibited spherical and oval shaped SCE-AuNPs in the size ranges of 5–50 nm. The organic compounds present in SCE were primarily responsible for the biological reduction of gold ions validated by FT-IR while the zeta potential confirmed the overall stability of SCE-AuNPs. The synthesized SCE-AuNPs exhibited variety of biological efficacies like antibacterial, antioxidant and anti-diabetic in nature. The biosynthesized SCE-AuNPs demonstrated remarkable bactericidal efficacy against clinically significant bacterial pathogens with inhibition zones of mm. Additionally, SCE-AuNPs exhibited greater antioxidant capacity in terms of DPPH: 85 ± 0.32% and RP: 82 ± 0.41%). The ability of enzyme inhibition assays to inhibit α-amylase (68 ± 0.21%) and α-glucosidase (79 ± 0.2%) was quite high. The study also highlighted the spectroscopic analysis of the biosynthesized SCE-AuNPs' catalytic effectiveness of 91% in the reduction processes of the perilous organic dyes, exhibiting pseudo-first order kinetics.
Collapse
Affiliation(s)
- Samson Rokkarukala
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
- Corresponding author.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Drug Testing Laboratory, Directorate of Research, SRM Institute Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Yosif Almoshari
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed Albariqi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad H. Sultan
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Saveetha University, Chennai, India
- Corresponding author. .
| |
Collapse
|
7
|
Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins (Basel) 2023; 15:toxins15020093. [PMID: 36828408 PMCID: PMC9966175 DOI: 10.3390/toxins15020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
To combat the ineffectiveness of currently available pharmaceutical medications, caused by the emergence of increasingly resistant bacterial and fungal strains, novel antibacterial and antifungal medications are urgently needed. Novel natural compounds with antimicrobial activities can be obtained by exploring underexplored habitats such as the world's oceans. The oceans represent the largest ecosystem on earth, with a high diversity of organisms. Oceans have received some attention in the past few years, and promising compounds with antimicrobial activities were isolated from marine organisms such as bacteria, fungi, algae, sea cucumbers, sea sponges, etc. This review covers 56 antifungal and 40 antibacterial compounds from marine organisms. These compounds are categorized according to their chemical structure groups, including polyketides, alkaloids, ribosomal peptides, and terpenes, and their organismal origin. The review provides the minimum inhibitory concentration MIC values and the bacterial/fungal strains against which these chemical compounds show activity. This study shows strong potential for witnessing the development of new novel antimicrobial drugs from these natural compounds isolated and evaluated for their antimicrobial activities.
Collapse
|
8
|
Rahman L, Mukhtar A, Ahmad S, Rahman L, Ali M, Saeed M, Shinwari ZK. Endophytic bacteria of Fagonia indica Burm. f revealed to harbour rich secondary antibacterial metabolites. PLoS One 2022; 17:e0277825. [PMID: 36520861 PMCID: PMC9754247 DOI: 10.1371/journal.pone.0277825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Endophytic bacteria are the source of novel bioactive compounds, used as therapeutic agent. Molecular docking is a computational technique use frequently, to find novel drugs targets and drugs-receptors interactions. The current study was designed to isolate and identify endophytic bacteria for the extraction of bioactive compounds. Further, to characterized extracts and to explore compounds interactions with bacterial cell wall and outer membrane synthesizing proteins. Endophytes were identified using 16s rRNA amplification technique. For bioactive compounds, solvent extraction method was followed and characterized further through GC-MS analysis. To find targets and drugs-receptors interactions, molecular docking studies and biological assays were performed. The isolated endophytes belong to five different genera namely Enterobacter, Bacillus, Erwinia, Stenotrophomonas and Pantoea. In case of antibacterial assay Stenotrophomonas maltophilia extract showed significant inhibitory zones (15.11±0.11mm and 11.3±0.16) against Staphylococcus caseolyticus and Acinetobacter baumanni, with MIC 33.3 and 50μg/mL respectively. Among the characterized fifty compounds, from endophytic bacteria "antibacterial compound" N-(5-benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-8H-oxazolo[3,2-α] pyrrolo[2,1c] pyrazin-2-yl)-7-methyl2,3,3a,3a1,6,6a,7,8,9,10,10a,10b-dodecahydro-1H-4λ2-indolo[4,3-fg]quinoline-9-carboxamide of bacteria Stenotrophomonas maltophilia were an excellent binder with MurF ligase active site, with binding energy of -10.2 kcal/mol. Extracts of endophytic bacteria composed of various pharmacologically active ingredients such as antibacterial compounds. Molecular docking studies provide important information regarding drug-receptor interaction, thus can be used in novel drug discovery.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| | - Asma Mukhtar
- Department of Chemistry and Chemical Engineering, SBA, School of Science and Engineering LUMS, Lahore, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Lutfur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA, School of Science and Engineering LUMS, Lahore, Pakistan
| | | |
Collapse
|
9
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Thomas NV, Monica Diyya AS, Kim SK, Faraj KA, Ghafoor DD, Qian ZJ, Tigabu BM. Bioactives from Marine Organisms and their Potential Role as Matrix Metalloproteinase Inhibitors. Curr Pharm Des 2022; 28:3351-3362. [PMID: 36411577 DOI: 10.2174/1381612829666221121145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Recent research has revealed the role of metalloproteinases in a number of severe pathological illnesses, including cardiac, cartilage, neurological, and cancer-related diseases that are fatal to humans. Metalloproteinases are a subclass of endopeptidases that comprise structurally identical enzymes known as Matrix Metalloproteinases (MMPs) that are solely involved in extracellular matrix degradation and play a significant regulatory function in tissue remodeling. Improper regulation and expression of MMPs have been linked to several life-threatening pathological conditions in humans. Hence there is an ever-growing interest in various research communities to identify and report the Matrix Metalloproteinase Inhibitors (MMPIs). In spite of several chemically synthesized MMPIs being available currently, several unpleasant side effects, un-successful clinical trials have made use of synthetic MMPIs as a risky strategy. Several natural product researchers have strongly recommended and reported many natural resources like plants, microorganisms, and animals as greater resources to screen for bioactives that can function as potential natural MMPIs. Marine environment is one of the vast and promising resources that harbor diverse forms of life known to synthesize biologically active compounds. These bioactive compounds from marine organisms have been reported for their unparalleled biological effects and have profound applications in cosmeceutical, nutraceutical, and pharmaceutical research. Several research groups have reported an umpteen number of medicinally unmatched compounds from marine flora and fauna, thus driving researchers to screen marine organisms for natural MMPIs. In this review, our group has reported the potential MMPIs from marine organisms.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Department of Biomedical Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Apoorva Salomy Monica Diyya
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do, 11558, Korea
| | - Kaeuis Aziz Faraj
- Department of Nursing, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Dlzar Dlshad Ghafoor
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq.,Department of Chemistry, College of Science, University of Sulaymaniyah, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Zhong Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bereket Molla Tigabu
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| |
Collapse
|
11
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
12
|
Arrieche D, Carrasco H, Olea AF, Espinoza L, San-Martín A, Taborga L. Secondary Metabolites Isolated from Chilean Marine Algae: A Review. Mar Drugs 2022; 20:337. [PMID: 35621988 PMCID: PMC9147571 DOI: 10.3390/md20050337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chile is in the extreme southwestern part of America, and it has an extreme length, of approximately 4300 km that increases to 8000 km considering the Chilean Antarctic Territory. Despite the large extent of its coastal territory and the diversity of geographic environments and climates associated with Chilean coasts, the research on marine resources in Chile has been rather scarce. From marine organisms found in Chilean coastal waters, algae have been the most studied, since they contain a wide range of interesting secondary metabolites that have some structural traits that make them unique and uncharacteristic. Thus, a wide structural variety of natural products including terpenoids (monoterpenes, sesquiterpenes, diterpenes, and meroterpenoids), furanones, and C15-acetogenins have been isolated and identified. This review describes the existing literature on bioprospecting and exploration of secondary metabolites from Chilean coasts.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 8900000, CP, Chile; (H.C.); (A.F.O.)
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 8900000, CP, Chile; (H.C.); (A.F.O.)
| | - Luis Espinoza
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| | - Aurelio San-Martín
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas 6200112, CP, Chile
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| |
Collapse
|
13
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901, Hammam-Lif 2050, Tunisia;
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
- Correspondence: (M.Y.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
- Correspondence: (M.Y.); (G.T.)
| |
Collapse
|
14
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
15
|
Wang X, Qiu H, Yang N, Xie H, Liang W, Lin J, Zhu H, Zhou Y, Wang N, Tan X, Zhou J, Cui W, Teng D, Wang J, Liang H. Fascaplysin derivatives binding to DNA via unique cationic five-ring coplanar backbone showed potent antimicrobial/antibiofilm activity against MRSA in vitro and in vivo. Eur J Med Chem 2022; 230:114099. [PMID: 35007859 DOI: 10.1016/j.ejmech.2021.114099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the most dangerous clinical pathogens. Biofilms forming ability of MRSA is also a major cause of drug resistance. Hence, it is in urgent need to develop novel antibacterial/antibiofilm drugs. Fascaplysin with a unique cationic five-ring coplanar backbone is emerging as a potential antibacterial compound. In this study, aiming at developing novel and more effective agents, a series of fascaplysin derivatives and their corresponding β-carboline precursors have been synthesized. Then their antibacterial/antibiofilm activity and mechanisms against MRSA were investigated for the first time. The results showed that most fascaplysins rather than β-carboline precursors exhibit superior antimicrobial activity against MRSA ATCC43300, demonstrating the important role of cationic five-ring coplanar backbone playing in antibacterial activity. Among them, 14 and 18 are the most potent compounds with MIC value of 0.098 μg/ml (10-fold lower than vancomycin), and 18 featuring the lowest toxicity. Subsequent mechanisms exploration indicates that 18 has relatively stronger ability to destroy bacterial cell wall and membrane, higher binding affinity to bacterial genomic DNA. Molecular docking study revealed that besides the key role of cationic five-ring coplanar backbone, introduction of N-aryl amide at 9-position of fascaplysin promoted the combination of compound 18 and DNA via additional π-π stacking and hydrogen bonding of the naphthyl group. Moreover, fascaplysins could inhibit MRSA biofilm formation in vitro and bacterial infection in vivo. All these results illustrate that fascaplysin derivative 18 is a strong and safe multi-target antibacterial agent, which makes it an attractive candidate for the treatment of MRSA and its biofilm infections.
Collapse
Affiliation(s)
- Xiao Wang
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoji Xie
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiayu Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Haifeng Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Tan
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiale Zhou
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei Cui
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
16
|
YÜCEL TB. Comparison of volatile chemical components of Cystoseira crinita Duby by hydro-distillation (HD) and solid-phase microextraction (SPME) methods and antimicrobial and scolicidal activities of essential oil and extracts. Turk J Chem 2021; 46:378-393. [PMID: 38143468 PMCID: PMC10734744 DOI: 10.3906/kim-2104-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2022] [Accepted: 11/25/2021] [Indexed: 12/26/2023] Open
Abstract
This study aims to derive an essential oil from Cystoseira crinita Duby, analyze the chemical composition of the essential oil, discover the antimicrobial activities of the oil and the extracts, and investigate the scolicidal activities of the extracts. The volatile organic compounds of Cystoseira crinita Duby were determined by GC/MS-FID using both hydro-distillation (HD) and solid-phase microextraction (SPME) methods. As a result of the essential oil analysis, 97.14% of 17 compounds and 93.13% of 19 compounds were elucidated. The main compounds identified were hexanal (31.802%), n-hexadecanoic acid (12.654%), trans-β-ionone (9.118%), 2E-hexenal (15.955%), heptadecane (15.729%) and tetradecane (13.458%). In addition, hexane, dichloromethane, chloroform, and methanol extracts of the algae sample were prepared. The antimicrobial activities of the essential oil and extracts on gram-positive bacteria, gram-negative bacteria, and fungi microorganisms were studied. The results revealed activity within the zone diameter range of 8-16 mm. It was observed that all extracts and the essential oil itself showed high activity against the Pseudomonas aeruginosa ATCC 27853 microorganism. The chloroform and dichloromethane extracts were also found to demonstrate a high level of efficacy against Bacillus cereus ATCC 10876. Furthermore, viability detection was performed and the scolicidal effects of the extracts on protoscoleces were assessed. All extracts showed a strong scolicidal effect at the dose of 15000 μg/mL. For each solution, the difference between hours at each dose and the difference between doses at every hour were compared by One-Way ANOVA. The values of lethal concentration doses (LD50 and LD90) were calculated using Probit Analysis. This study provides information about the effects of Cystoseira crinita Duby algae extracts and suggests that the experimental studies needed for their use in live cells should be performed.
Collapse
|
17
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
18
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Do TTT, Chua MCH, Nguyen BP. Predicting Antimalarial Activity in Natural Products Using Pretrained Bidirectional Encoder Representations from Transformers. J Chem Inf Model 2021; 62:5050-5058. [PMID: 36373285 DOI: 10.1021/acs.jcim.1c00584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Quang H. Trinh
- Computational Biology Center, International University−VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Loc Nguyen
- Computational Biology Center, International University−VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Trang T. T. Do
- School of Business and Information Technology, Wellington Institute of Technology, 21 Kensington Avenue, Lower Hutt 5012, New Zealand
| | - Matthew Chin Heng Chua
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| |
Collapse
|
19
|
Microwave-assisted synthesis of new 2-aryl and 2-alkylimidazolones and evaluation of their in vitro anticancer activity and their in vivo toxicity on zebrafish embryos. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01502-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Kumar V, Parate S, Yoon S, Lee G, Lee KW. Computational Simulations Identified Marine-Derived Natural Bioactive Compounds as Replication Inhibitors of SARS-CoV-2. Front Microbiol 2021; 12:647295. [PMID: 33967984 PMCID: PMC8097174 DOI: 10.3389/fmicb.2021.647295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
The rapid spread of COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide health emergency. Unfortunately, to date, a very small number of remedies have been to be found effective against SARS-CoV-2 infection. Therefore, further research is required to achieve a lasting solution against this deadly disease. Repurposing available drugs and evaluating natural product inhibitors against target proteins of SARS-CoV-2 could be an effective approach to accelerate drug discovery and development. With this strategy in mind, we derived Marine Natural Products (MNP)-based drug-like small molecules and evaluated them against three major target proteins of the SARS-CoV-2 virus replication cycle. A drug-like database from MNP library was generated using Lipinski's rule of five and ADMET descriptors. A total of 2,033 compounds were obtained and were subsequently subjected to molecular docking with 3CLpro, PLpro, and RdRp. The docking analyses revealed that a total of 14 compounds displayed better docking scores than the reference compounds and have significant molecular interactions with the active site residues of SARS-CoV-2 virus targeted proteins. Furthermore, the stability of docking-derived complexes was analyzed using molecular dynamics simulations and binding free energy calculations. The analyses revealed two hit compounds against each targeted protein displaying stable behavior, binding affinity, and molecular interactions. Our investigation identified two hit compounds against each targeted proteins displaying stable behavior, higher binding affinity and key residual molecular interactions, with good in silico pharmacokinetic properties, therefore can be considered for further in vitro studies.
Collapse
Affiliation(s)
- Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju, South Korea
| | - Sanghwa Yoon
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Gihwan Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju, South Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
21
|
Zhou J, Zhang H, Ye J, Wu X, Wang W, Lin H, Yan X, Lazaro JEH, Wang T, Naman CB, He S. Cytotoxic Polyketide Metabolites from a Marine Mesophotic Zone Chalinidae Sponge-Associated Fungus Pleosporales sp. NBUF144. Mar Drugs 2021; 19:186. [PMID: 33810590 PMCID: PMC8065988 DOI: 10.3390/md19040186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Two new polyketide natural products, globosuxanthone F (1), and 2'-hydroxy bisdechlorogeodin (2), were isolated from the fungus Pleosporales sp. NBUF144, which was derived from a 62 m deep Chalinidae family sponge together with four known metabolites, 3,4-dihydroglobosuxanthone A (3), 8-hydroxy-3-methylxanthone-1-carboxylate (4), crosphaeropsone C (5), and 4-megastigmen-3,9-dione (6). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis, including 1D and 2D NMR and high-resolution electrospray ionization mass spectra (HRESIMS) data. The absolute configuration of 1 was further established by single-crystal X-ray diffraction studies. Compounds 1-5 were evaluated for cytotoxicity towards CCRF-CEM human acute lymphatic leukemia cells, and it was found that 1 had an IC50 value of 0.46 µM.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| | - Hairong Zhang
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (J.Y.); (X.W.)
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (J.Y.); (X.W.)
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Houwen Lin
- State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Research Center for Marine Drugs, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Xiaojun Yan
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| | - J. Enrico H. Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon 1101, Philippines;
| | - Tingting Wang
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| | - C. Benjamin Naman
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| | - Shan He
- Department of Marine Pharmacy, Li Dak Sum Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China; (J.Z.); (H.Z.); (X.Y.); (C.B.N.)
| |
Collapse
|
22
|
Egieyeh S, Malan SF, Christoffels A. Cheminformatics techniques in antimalarial drug discovery and development from natural products 2: Molecular scaffold and machine learning approaches. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in-vitro antiplasmodial activities. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of two cheminformatics techniques (including molecular scaffold analysis and bioactivity predictive modeling via Machine learning) to natural products with in-vitro and in-vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.
Collapse
Affiliation(s)
- Samuel Egieyeh
- School of Pharmacy , University of the Western Cape Faculty of Natural Science , Belville , South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| | - Sarel F. Malan
- School of Pharmacy , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| |
Collapse
|
23
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
24
|
Nekooei M, Shafiee SM, Zahiri M, Maryamabadi A, Nabipour I. The methanol extract of red algae, Dichotomaria obtusata, from Persian Gulf promotes in vitro osteogenic differentiation of bone marrow mesenchymal stem cells; a biological and phytochemical study. J Pharm Pharmacol 2021; 73:347-356. [PMID: 33793878 DOI: 10.1093/jpp/rgaa046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Osteoporosis is a major public health problem that is appeared with increasing age. This study evaluated the effect of the algae Dichotomaria obtusata methanol extract on osteogenic differentiation of the cultured bone marrow mesenchymal stem cells (BMMSCs) in vitro and analyzed the algae methanol extract to find out the potent beneficial components. METHODS Dichotomaria obtusata were collected from the coastal area of Bushehr City in the Persian Gulf, Iran. The expression of osteogenesis-related genes was examined using real-time PCR. The formation of calcium deposits in differentiated MSCs was examined by Alizarin R staining. Analyses of algae extract ingredients were performed by gas chromatography-mass spectrometry (GC-MS). KEY FINDINGS Methanol extract of the algae caused the up-regulation of osteogenic genes that were significant for Osteopontin and Osteocalcin (P < 0.05) and also led to an increase in calcium deposits and matrix mineralization in BMMSCs. The GC-MS analyses of the algae extracts resulted in the identification of steroids and essential fatty acids. CONCLUSION The results of the study indicated that the methanol extract of D. obtusata may possess significant potentials for the prevention of osteoporosis in vitro.
Collapse
Affiliation(s)
- Maryam Nekooei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ammar Maryamabadi
- Research and Development Department, Shakheh Zeytoon Lian Inspection Co., Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
25
|
Moga MA, Dima L, Balan A, Blidaru A, Dimienescu OG, Podasca C, Toma S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?-A Review. Int J Mol Sci 2021; 22:E629. [PMID: 33435168 PMCID: PMC7826946 DOI: 10.3390/ijms22020629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| | - Andreea Balan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, 020021 Bucharest, Romania
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Cezar Podasca
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| |
Collapse
|
26
|
Narasimha G, Rao Y. Isolation and screening of marine actinobacteria for their antimicrobial compounds. Pharmacognosy Res 2021. [DOI: 10.4103/pr.pr_31_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Jayaraman S, Naorem A, Lal R, Dalal RC, Sinha N, Patra A, Chaudhari S. Disease-Suppressive Soils-Beyond Food Production: a Critical Review. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2021; 21:1437-1465. [PMID: 33746349 PMCID: PMC7953945 DOI: 10.1007/s42729-021-00451-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/21/2021] [Indexed: 05/09/2023]
Abstract
In the pursuit of higher food production and economic growth and increasing population, we have often jeopardized natural resources such as soil, water, vegetation, and biodiversity at an alarming rate. In this process, wider adoption of intensive farming practices, namely changes in land use, imbalanced fertilizer application, minimum addition of organic residue/manure, and non-adoption of site-specific conservation measures, has led to declining in soil health and land degradation in an irreversible manner. In addition, increasing use of pesticides, coupled with soil and water pollution, has led the researchers to search for an environmental-friendly and cost-effective alternatives to controlling soil-borne diseases that are difficult to control, and which significantly limit agricultural productivity. Since the 1960s, disease-suppressive soils (DSS) have been identified and studied around the world. Soil disease suppression is the reduction in the incidence of soil-borne diseases even in the presence of a host plant and inoculum in the soil. The disease-suppressive capacity is mainly attributed to diverse microbial communities present in the soil that could act against soil-borne pathogens in multifaceted ways. The beneficial microorganisms employ some specific functions such as antibiosis, parasitism, competition for resources, and predation. However, there has been increasing evidence on the role of soil abiotic factors that largely influence the disease suppression. The intricate interactions of the soil, plant, and environmental components in a disease triangle make this process complex yet crucial to study to reduce disease incidence. Increasing resistance of the pathogen to presently available chemicals has led to the shift from culturable microbes to unexplored and unculturable microbes. Agricultural management practices such as tillage, fertilization, manures, irrigation, and amendment applications significantly alter the soil physicochemical environment and influence the growth and behaviour of antagonistic microbes. Plant factors such as age, type of crop, and root behaviour of the plant could stimulate or limit the diversity and structure of soil microorganisms in the rhizosphere. Further, identification and in-depth of disease-suppressive soils could lead to the discovery of more beneficial microorganisms with novel anti-microbial and plant promoting traits. To date, several microbial species have been isolated and proposed as key contributors in disease suppression, but the complexities as well as the mechanisms of the microbial and abiotic interactions remain elusive for most of the disease-suppressive soils. Thus, this review critically explores disease-suppressive attributes in soils, mechanisms involved, and biotic and abiotic factors affecting DSS and also briefly reviewing soil microbiome for anti-microbial drugs, in fact, a consequence of DSS phenomenon.
Collapse
Affiliation(s)
- Somasundaram Jayaraman
- ICAR–Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh 462038 India
| | - A.K. Naorem
- ICAR– Central Arid Zone Research Institute, Regional Research Station-Kukma, Bhuj, Gujarat 370105 India
| | - Rattan Lal
- Carbon Management Sequestration Center, The Ohio State University, 2021 Coffey Rd, Columbus, OH USA
| | - Ram C. Dalal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - N.K. Sinha
- ICAR–Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh 462038 India
| | - A.K. Patra
- ICAR–Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh 462038 India
| | - S.K. Chaudhari
- Indian Council of Agricultural Research, KAB-II, New Delhi, India
| |
Collapse
|
28
|
Majumder I, Paul S, Nag A, Kundu R. Chloroform fraction of Chaetomorpha brachygona, a marine green alga from Indian Sundarbans inducing autophagy in cervical cancer cells in vitro. Sci Rep 2020; 10:21784. [PMID: 33311531 PMCID: PMC7733477 DOI: 10.1038/s41598-020-78592-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Sundarbans Mangrove Ecosystem (SME) is a rich repository of bioactive natural compounds, with immense nutraceutical and therapeutic potential. Till date, the algal population of SME was not explored fully for their anticancer activities. Our aim is to explore the potential of these algal phytochemicals against the proliferation of cervical cancer cells (in vitro) and identify the mode of cell death induced in them. In the present work, the chloroform fraction of marine green alga, Chaetomorpha brachygona was used on SiHa cell line. The algal phytochemicals were identified by GCMS, LCMS and column chromatography and some of the identified compounds, known for significant anticancer activities, have shown strong Bcl-2 binding capacity, as analyzed through molecular docking study. The extract showed cytostatic and cytotoxic activity on SiHa cells. Absence of fragmented DNA, and presence of increased number of acidic vacuoles in the treated cells indicate nonapoptotic cell death. The mode of cell death was likely to be autophagic, as indicated by the enhanced expression of Beclin 1 and LC3BII (considered as autophagic markers) observed by Western blotting. The study indicates that, C. brachygona can successfully inhibit the proliferation of cervical cancer cells in vitro.
Collapse
Affiliation(s)
- Indira Majumder
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhabrata Paul
- School of Biotechnology, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, West Bengal, 700156, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed To Be University), Bangalore, 560029, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
29
|
Alam P, Alqahtani AS, Mabood Husain F, Tabish Rehman M, Alajmi MF, Noman OM, El Gamal AA, Al-Massarani SM, Shavez Khan M. Siphonocholin isolated from red sea sponge Siphonochalina siphonella attenuates quorum sensing controlled virulence and biofilm formation. Saudi Pharm J 2020; 28:1383-1391. [PMID: 33250645 PMCID: PMC7679466 DOI: 10.1016/j.jsps.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/25/2023] Open
Abstract
Increasing incidence of multi-drug resistant bacterial pathogens, especially in clinical settings, has been developed into a grave health situation. The drug resistance problem demands the necessity for alternative unique therapeutic policies. One such tactic is targeting the quorum sensing (QS) controlled virulence and biofilm production. In this study, we evaluated a marine steroid Siphonocholin (Syph-1) isolated from Siphonochalina siphonella against Chromobacterium violaceum (CV) 12472, Pseudomonas aeruginosa (PAO1), Methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii (BAA) for biofilm and pellicle formation inhibition, and anti-QS property. MIC of Syph-1 against MRSA, CV, PAO1 was found as 64 µg/mL and 256 µg/mL against BAA. At selected sub-MICs, Syph-1 significantly (P ≤ 0.05) decreased the production of QS regulated virulence functions of CV12472 (violacein) and PAO1 [elastase, total protease, pyocyanin, chitinase, exopolysaccharides, and swarming motility]. The Syph-1 significantly decreased (p = 0.005) biofilm formation ability of tested bacterial pathogens, at sub-MIC level (PAO1 > MRSA > CV > BAA) and pellicle formation in A. baumannii (at 128 µg/mL). Molecular docking and simulation results indicated that Siph-1 was bound at the active site of BfmR N-terminal domain with high affinity. This study highlights the anti-QS and anti-biofilm activity of Syph-1 against bacterial pathogens reflecting its broad spectrum anti-infective potential.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaza M. Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Shavez Khan
- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
30
|
Chau KM, Van Quyen D, Fraser JM, Smith AT, Van TTH, Moore RJ. Broad spectrum antimicrobial activities from spore-forming bacteria isolated from the Vietnam Sea. PeerJ 2020; 8:e10117. [PMID: 33088622 PMCID: PMC7571411 DOI: 10.7717/peerj.10117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The widespread occurrence of pathogenic bacteria resistant to last-line antibiotics has resulted in significant challenges in human and veterinary medicine. There is an urgent need for new antimicrobial agents that can be used to control these life threating pathogens. We report the identification of antimicrobial activities, against a broad range of bacterial pathogens, from a collection of marine-derived spore-forming bacteria. Although marine environments have been previously investigated as sources of novel antibiotics, studies on such environments are still limited and there remain opportunities for further discoveries and this study has used resources derived from an under-exploited region, the Vietnam Sea. Antimicrobial activity was assessed against a panel of Gram-positive and Gram-negative bacteria, including several multi-drug resistant pathogens. From a total of 489 isolates, 16.4% had antimicrobial activity. Of 23 shortlisted isolates with the greatest antimicrobial activity, 22 were Bacillus spp. isolates and one was a Paenibacillus polymyxa isolate. Most of the antimicrobial compounds were sensitive to proteases, indicating that they were proteins rather than secondary metabolites. The study demonstrated that marine bacteria derived from the Vietnam Sea represent a rich resource, producing antimicrobial compounds with activity against a broad range of clinically relevant bacterial pathogens, including important antibiotic resistant pathogens. Several isolates were identified that have particularly broad range activities and produce antimicrobial compounds that may have value for future drug development.
Collapse
Affiliation(s)
- Khanh Minh Chau
- School of Science, RMIT University, Bundoora, Victoria, Australia.,NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Khanh Hoa, Vietnam
| | - Dong Van Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Joshua M Fraser
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Andrew T Smith
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
31
|
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs 2020; 18:E225. [PMID: 32340389 PMCID: PMC7231030 DOI: 10.3390/md18040225] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpr) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpr inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpr inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.
Collapse
Affiliation(s)
- Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Vincenzo Patamia
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPS), Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
32
|
Chu L, Huang J, Muhammad M, Deng Z, Gao J. Genome mining as a biotechnological tool for the discovery of novel marine natural products. Crit Rev Biotechnol 2020; 40:571-589. [PMID: 32308042 DOI: 10.1080/07388551.2020.1751056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compared to terrestrial environments, the oceans harbor a variety of environments, creating higher biodiversity, which gives marine natural products a high occurrence of significant biology and novel chemistry. However, traditional bioassay-guided isolation and purification strategies are severely limiting the discovery of additional novel natural products from the ocean. With an increasing number of marine microorganisms being sequenced, genome mining is gradually becoming a powerful tool to retrieve novel marine natural products. In this review, we have summarized genome mining approaches used to analyze key enzymes of biosynthetic pathways and predict the chemical structure of new gene clusters by introducing successful stories that used genome mining strategy to identify new marine-derived compounds. Furthermore, we also put forward challenges for genome mining techniques and their proposed solutions. The detailed analysis of the genome mining strategy will help researchers to understand this novel technique and its application. With the development of a genome sequence, genome mining strategies will be applied more widely, which will drive rapid development in the field of marine natural product development.
Collapse
Affiliation(s)
- Leixia Chu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinping Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mustafa Muhammad
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Cystoseira barbata marine algae have a molluscicidal activity against Biomphalaria alexandrina snails supported by scanning electron microscopy, hematological and histopathological alterations, and larvicidal activity against the infective stages of Schistosoma mansoni. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00457-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
35
|
Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
37
|
Carpes RDM, Alves MDA, Creed JC, da Silva CA, Hamerski L, Garden SJ, Fleury BG, Felzenszwalb I. Mutagenic, genotoxic and cytotoxic studies of invasive corals Tubastraea coccinea and Tubastraea tagusensis. J Appl Toxicol 2019; 40:373-387. [PMID: 31849086 DOI: 10.1002/jat.3911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 11/06/2022]
Abstract
The high diversity of species in the marine environment gives rise to compounds with unique structural patterns not found as natural products in other systems and with great potential for pharmacological, cosmetic and nutritional use. The genus Tubastraea (Class Anthozoa, Order Scleractinia, Family Dendrophylliidae) is characterized as a hard coral without the presence of zooxanthellae. In species of this genus alkaloids derived from the compound aplysinopsin with pharmacological activity are known. In Brazil T. coccinea and T. tagusensis are characterized as non-indigenous and invasive and are currently found along the Brazilian coast, from Santa Catarina to Bahia states. This study aims to analyze the mutagenic, cytotoxic and genotoxic potential of methanolic and ethanolic extracts from T. coccinea and T. tagusensis collected in Ilha Grande Bay, Rio de Janeiro state, Brazil. Bacterial reverse mutation assay on the standard strains TA97, TA98, TA100, TA102 and TA104, in vitro micronucleus formation test and colorimetric assays for cytotoxic signals on the cell lines HepG2 and RAW264.7 were used. We also synthesized an oxoaplysinopsin derivate alkaloid (APL01) for comparative purposes. No mutagenic (250; 312.5; 375; 437.5 and 500 μg/plate) or genotoxic (0.05; 0.5; 5.0; 50 and 500 μg/mL) effects were observed in any sample tested for all measured concentrations. Cytotoxic responses were observed for eukaryotic cells in all tested samples at 500 and 5000 μg/mL concentrations. Cytotoxicity found in the WST-1 assay was independent of the metabolism of substances present in samples compositions. The cytotoxicity observed in the LDH release assay depended on metabolism.
Collapse
Affiliation(s)
- Raphael de Mello Carpes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Matteus de Assis Alves
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joel Christopher Creed
- Department of Ecology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Carla Amaral da Silva
- Laboratory of Natural Products, Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Lidilhone Hamerski
- Laboratory of Natural Products, Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Simon John Garden
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Beatriz Grosso Fleury
- Department of Ecology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Mishra A, Medhi K, Malaviya P, Thakur IS. Omics approaches for microalgal applications: Prospects and challenges. BIORESOURCE TECHNOLOGY 2019; 291:121890. [PMID: 31378447 DOI: 10.1016/j.biortech.2019.121890] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In recent impetus of phycological research, microalgae have emerged as a potential candidate for various arena of application-driven research. Omics-based tactics are used for disentangling the regulation and network integration for biosynthesis/degradation of metabolic precursors, intermediates, end products, and identifying the networks that regulate the metabolic flux. Multi-omics coupled with data analytics have facilitated understanding of biological processes and allow ample access to diverse metabolic pathways utilized for genetic manipulations making microalgal factories more efficient. The present review discusses state-of-art "Algomics" and the prospect of microalgae and their role in symbiotic association by using omics approaches including genomics, transcriptomics, proteomics and metabolomics. Microalgal based uni- and multi-omics approaches are critically analyzed in wastewater treatment, metal toxicity and remediation, biofuel production, and therapeutics to provide an imminent outlook for an array of environmentally sustainable and economically viable microalgal applications.
Collapse
Affiliation(s)
- Arti Mishra
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kristina Medhi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Piyush Malaviya
- Department of Environmental Science, University of Jammu, Jammu (J&K), India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
39
|
Reen FJ, Gutiérrez-Barranquero JA, McCarthy RR, Woods DF, Scarciglia S, Adams C, Fog Nielsen K, Gram L, O'Gara F. Quorum Sensing Signaling Alters Virulence Potential and Population Dynamics in Complex Microbiome-Host Interactomes. Front Microbiol 2019; 10:2131. [PMID: 31572336 PMCID: PMC6749037 DOI: 10.3389/fmicb.2019.02131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the discovery of the first N-acyl homoserine lactone (AHL) based quorum sensing (QS) in the marine environment, relatively little is known about the abundance, nature and diversity of AHL QS systems in this diverse ecosystem. Establishing the prevalence and diversity of AHL QS systems and how they may influence population dynamics within the marine ecosystem, may give a greater insight into the evolution of AHLs as signaling molecules in this important and largely unexplored niche. Microbiome profiling of Stelletta normani and BD1268 sponge samples identified several potential QS active genera. Subsequent biosensor-based screening of a library of 650 marine sponge bacterial isolates identified 10 isolates that could activate at least one of three AHL biosensor strains. Each was further validated and profiled by Ultra-High Performance Liquid Chromatography Mass Spectrometry, with AHLs being detected in 8 out of 10 isolate extracts. Co-culture of QS active isolates with S. normani marine sponge samples led to the isolation of genera such as Pseudomonas and Paenibacillus, both of which were low abundance in the S. normani microbiome. Surprisingly however, addition of AHLs to isolates harvested following co-culture did not measurably affect either growth or biofilm of these strains. Addition of supernatants from QS active strains did however impact significantly on biofilm formation of the marine Bacillus sp. CH8a sporeforming strain suggesting a role for QS systems in moderating the microbe-microbe interaction in marine sponges. Genome sequencing and phylogenetic analysis of a QS positive Psychrobacter isolate identified several QS associated systems, although no classical QS synthase gene was identified. The stark contrast between the biodiverse sponge microbiome and the relatively limited diversity that was observed on standard culture media, even in the presence of QS active compounds, serves to underscore the extent of diversity that remains to be brought into culture.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Sara Scarciglia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
40
|
Asfour HZ, Awan ZA, Bagalagel AA, Elfaky MA, Abdelhameed RFA, Elhady SS. Large-Scale Production of Bioactive Terrein by Aspergillus terreus Strain S020 Isolated from the Saudi Coast of the Red Sea. Biomolecules 2019; 9:biom9090480. [PMID: 31547354 PMCID: PMC6769563 DOI: 10.3390/biom9090480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
The diversity of symbiotic fungi derived from two marine sponges and sediment collected off Obhur, Jeddah (Saudi Arabia), was investigated in the current study. A total of 23 isolates were purified using a culture-dependent approach. Using the morphological properties combined with internal transcribed spacer-rDNA (ITS-rDNA) sequences, 23 fungal strains (in the majority Penicillium and Aspergillus) were identified from these samples. The biological screening (cytotoxic and antimicrobial activities) of small-scale cultures of these fungi yielded several target fungal strains which produced bioactive secondary metabolites. Amongst these isolates, the crude extract of Aspergillus terreus strain S020, which was cultured in fermentation static broth, 21 L, for 40 days at room temperature on potato dextrose broth, displayed strong antimicrobial activities against Pseudomonas aeruginosa and Staphylococcus aureus and significant antiproliferative effects on human carcinoma cells. Chromatographic separation of the crude extract by silica gel column chromatography indicated that the S020 isolate could produce a series of chemical compounds. Among these, pure crystalline terrein was separated with a high yield of 537.26 ± 23.42 g/kg extract, which represents the highest fermentation production of terrein to date. Its chemical structure was elucidated on the basis of high-resolution electrospray ionization mass spectrometry (HRESIMS) or high-resolution mass spectrometry (HRMS), 1D, and 2D NMR spectroscopic analyses and by comparison with reported data. The compound showed strong cytotoxic activity against colorectal carcinoma cells (HCT-116) and hepatocellular carcinoma cells (HepG2), with IC50 values of 12.13 and 22.53 µM, respectively. Our study highlights the potential of A. terreus strain S020 for the industrial production of bioactive terrein on a large scale and the importance of future investigations of these strains to identify the bioactive leads in these fungal extracts.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Alaa A Bagalagel
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sameh S Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.
| |
Collapse
|
41
|
Taj D, Tariq A, Sultana V, Ara J, Ahmad VU, Ehteshamul-Haque S. Protective role of Stokeyia indica in liver dysfunction and associated complications in acetaminophen intoxicated rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
43
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
44
|
Bodhaguru M, Santhiyagu P, Lakshmanan M, Ramasamy R, Kumari AN, Ethiraj K, Arunachalam P, Grasian I. In vitro biomedicinal properties of Pyrrolidine-2,4-Dione derived from a novel actinobacterium Streptomyces rochei, a green approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Gomathi A, Gothandam KM. Investigation of anti‐inflammatory and toxicity effects of mangrove‐derived
Streptomyces rochei
strain VITGAP173. J Cell Biochem 2019; 120:17080-17097. [DOI: 10.1002/jcb.28969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ajitha Gomathi
- Department of Biotechnology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT) Vellore Tamil Nadu India
| | - Kodiveri Muthukalianan Gothandam
- Department of Biotechnology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT) Vellore Tamil Nadu India
| |
Collapse
|
46
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
47
|
Bastos CLQ, Josende ME, Ferreira SP, de Magalhães MTQ, de Castro Pimenta AM, Lima JV, Boyle RT. Polypeptides secreted from the columnar vesicles of the sea anemone Bunodosoma cangicum and their in vivo effects on Caenorhabditis elegans. Cell Biol Int 2019; 43:429-436. [PMID: 30672061 DOI: 10.1002/cbin.11107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/19/2019] [Indexed: 11/09/2022]
Abstract
In this study we provide new evidence that the columnar vesicles of the sea anemone Bunodosoma cangicum are toxic in vivo and contain at least two active polypeptides, a neurotoxic and an apoptosis inducing polypeptide. Here we show that it is also an effective inducer of apoptosis in vivo in the nematode Caenorhabditis elegans. In addition, the anemone peptides rapidly paralyze C. elegans, and set in motion a sequence of events that result in the complete dissolution of the internal organs in adult animals within 60 min. Nematodes that survive the toxin treatment exhibit a decreased reproductive capacity. Interestingly, adult animals appear to be much more susceptible to the effects of the toxins than larval stages, suggesting possible developmentally dependent targets of the toxins. Here we also provide chemical characterization of the compounds through chromatographic analysis and mass spectrometry. Gel filtration chromatography coupled with reverse phase HPLC shows that our partially purified extract contains at least two principle components. Additionally, MALDI-TOF mass spectrometry analysis of our extract shows three principal compounds at 814.6, 2914.1, and 4360.3 m/z plus three other minor components or fragments. Mass spectrometry analysis also indicates the presence of three disulfide bridges. Which is in agreement with other characterizations of anemone venoms.
Collapse
Affiliation(s)
- Claudio L Q Bastos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Marcelo Estrella Josende
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Shana Pires Ferreira
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | | | | | - Juliane Ventura Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| |
Collapse
|
48
|
Amin M, Zhang XY, Xu XY, Qi SH. New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Nat Prod Res 2019; 34:1219-1226. [PMID: 30663375 DOI: 10.1080/14786419.2018.1556266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the course of our search for novel bioactive compounds from marine fungi, four new citrinin derivatives, cladosporins A-D (1-4) were isolated from a culture broth of the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Their complete structural assignments were elucidated by the extensive spectroscopic investigation. The absolute configurations of 1-3 were established by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compounds 1-4 showed weak toxicity towards brine shrine naupalii with LC50 values of 72.0, 81.7, 49.9 and 81.4 μM, respectively. And 4 also showed significant antioxidant activity against ɑ,α-diphenyl-picrylhydrazyl (DPPH) radicals with an IC50 value of 16.4 μM.
Collapse
Affiliation(s)
- Muhammad Amin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xin-Ya Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
50
|
Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach. PLoS One 2018; 13:e0204644. [PMID: 30265702 PMCID: PMC6161899 DOI: 10.1371/journal.pone.0204644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
In view of the vast number of natural products with potential antiplasmodial bioactivity and cost of conducting antiplasmodial bioactivity assays, it may be judicious to learn from previous antiplasmodial bioassays and predict bioactivity of these natural products before experimental bioassays. This study set out to harness antimalarial bioactivity data of natural products to build accurate predictive models, utilizing classical machine learning approaches, which can find potential antimalarial hits from new sets of natural products. Classical machine learning approaches were used to build four classifier models (Naïve Bayesian, Voted Perceptron, Random Forest and Sequence Minimization Optimization of Support Vector Machines) from bioactivity data of natural products with in-vitro antiplasmodial activity (NAA) using a combination of the molecular descriptors and two-dimensional molecular fingerprints of the compounds. Models were evaluated with an independent test dataset. Possible chemical features associated with reported antimalarial activities of the compounds were also extracted. From the results, Random Forest (accuracy 82.81%, Kappa statistics 0.65 and Area under Receiver Operating Characteristics curve 0.91) and Sequential Minimization Optimization (accuracy 85.93%, Kappa statistics 0.72 and Area under Receiver Operating Characteristics curve 0.86) showed good predictive performance for the NAA dataset. The amine chemical group (specifically alkyl amines and basic nitrogen) was confirmed to be essential for antimalarial activity in active NAA dataset. This study built and evaluated classifier models that were used to predict the antiplasmodial bioactivity class (active or inactive) of a set of natural products from interBioScreen chemical library.
Collapse
|