1
|
Ocalewicz K, Kuciński M, Jasielczuk I, Gurgul A, Kucharski M, Dobosz S. Transcript level of telomerase reverse-transcriptase (TERT) gene in the rainbow trout (Oncorhynchus mykiss) eggs with different developmental competence for gynogenesis. J Appl Genet 2024:10.1007/s13353-024-00887-8. [PMID: 38922511 DOI: 10.1007/s13353-024-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Expression of the telomerase reverse-transcriptase (TERT) gene and activity of telomerase have been reported in the somatic tissues and gonads in fish irrespective of their age and size. Nevertheless, little is known about TERT expression in the fish eggs. In the current study, the presence of the TERT transcripts was confirmed in the rainbow trout ovulated eggs before and after activation with nonirradiated and UV-irradiated (gynogenesis) sperm. Eggs originating from eight females had high and comparable quality expressed by similar hatching rates. However, survival of the gynogenetic larvae that hatched from eggs activated with UV-irradiated sperm and further exposed to the high hydrostatic pressure (HHP) shock for duplication of the maternal chromosomes varied between females from 2.1 ± 0.4 to 40.5 ± 2.2%. Increased level of TERT transcripts was observed in eggs originating from two females, and gametes from only one of them showed improved competence for gynogenesis (27.3 ± 1.9%). In turn, eggs from the female that exhibited the highest survival after gynogenetic activation were characterized by the lowest expression of the TERT gene. Telomerase in rainbow trout eggs may compensate erosion of the telomeres during early embryonic development; however, its upregulation does not assure better development after gynogenetic activation.
Collapse
Affiliation(s)
- Konrad Ocalewicz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, 81-378, Gdynia, Poland.
| | - Marcin Kuciński
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, 81-378, Gdynia, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Mickiewicza 24/28, 30‑059, Krakow, Poland
| | - Stefan Dobosz
- Department of Salmonid Research, Inland Fisheries Institute in Olsztyn, Rutki, 83-330, Żukowo, Poland
| |
Collapse
|
2
|
Brown LM, Elbon MC, Bharadwaj A, Damle G, Lachance J. Does Effective Population Size Govern Evolutionary Differences in Telomere Length? Genome Biol Evol 2024; 16:evae111. [PMID: 38771124 PMCID: PMC11140418 DOI: 10.1093/gbe/evae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.
Collapse
Affiliation(s)
- Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mia C Elbon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajay Bharadwaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gargi Damle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Panasiak L, Kuciński M, Hliwa P, Pomianowski K, Ocalewicz K. Telomerase Activity in Somatic Tissues and Ovaries of Diploid and Triploid Rainbow Trout ( Oncorhynchus mykiss) Females. Cells 2023; 12:1772. [PMID: 37443805 PMCID: PMC10340188 DOI: 10.3390/cells12131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Telomerase activity has been found in the somatic tissues of rainbow trout. The enzyme is essential for maintaining telomere length but also assures homeostasis of the fish organs, playing an important role during tissue regeneration. The unique morphological and physiological characteristics of triploid rainbow trout, when compared to diploid specimens, make them a promising model for studies concerning telomerase activity. Thus, in this study, we examined the expression of the Tert gene in various organs of subadult and adult diploid and triploid rainbow trout females. Upregulated Tert mRNA transcription was observed in all the examined somatic tissues sampled from the triploid fish when compared to diploid individuals. Contrastingly, Tert expression in the ovaries was significantly decreased in the triploid specimens. Within the diploids, the highest expression of Tert was observed in the liver and in the ovaries of the subadult individuals. In the triploids, Tert expression was increased in the somatic tissues, while the ovaries exhibited lower activity of telomerase compared to other organs and decreased compared to the ovaries in the diploids. The ovaries of triploid individuals were underdeveloped, consisting of only a few oocytes. The lack of germ cells, which are usually characterized by high Tert expression, might be responsible for the decrease in telomerase activity in the triploid ovaries. The increase in Tert expression in triploid somatic tissues suggests that they require higher telomerase activity to cope with environmental stress and maintain internal homeostasis.
Collapse
Affiliation(s)
- Ligia Panasiak
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Marcin Kuciński
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Warszawska St. 117, 10-719 Olsztyn, Poland;
| | - Konrad Pomianowski
- Laboratory of Physiology of Marine Organisms, Genetics and Marine Biotechnology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Konrad Ocalewicz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| |
Collapse
|
4
|
Genetic Variants in Telomerase Reverse Transcriptase Contribute to Solar Lentigines. J Invest Dermatol 2022; 143:1062-1072.e25. [PMID: 36572090 DOI: 10.1016/j.jid.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 12/26/2022]
Abstract
Solar lentigines (SLs) are a hallmark of human skin aging. They result from chronic exposure to sunlight and other environmental stressors. Recent studies also imply genetic factors, but findings are partially conflicting and lack of replication. Through a multi-trait based analysis strategy, we discovered that genetic variants in telomerase reverse transcriptase were significantly associated with non-facial SL in two East Asian (Taizhou longitudinal cohort, n = 2,964 and National Survey of Physical Traits, n = 2,954) and one Caucasian population (SALIA, n = 462), top SNP rs2853672 (P-value for Taizhou longitudinal cohort = 1.32 × 10‒28 and P-value for National Survey of Physical Traits = 3.66 × 10‒17 and P-value for SALIA = 0.0007 and Pmeta = 4.93 × 10‒44). The same variants were nominally associated with facial SL but not with other skin aging or skin pigmentation traits. The SL-enhanced allele/haplotype upregulated the transcription of the telomerase reverse transcriptase gene. Of note, well-known telomerase reverse transcriptase‒related aging markers such as leukocyte telomere length and intrinsic epigenetic age acceleration were not associated with SL. Our results indicate a previously unrecognized role of telomerase reverse transcriptase in skin aging‒related lentigines formation.
Collapse
|
5
|
Panasiak L, Kuciński M, Błaszczyk A, Ocalewicz K. Telomerase Activity in Androgenetic Rainbow Trout with Growth Deficiency and in Normally Developed Individuals. Zebrafish 2022; 19:131-136. [PMID: 35867071 DOI: 10.1089/zeb.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Role of telomerase in specimens with retarded growth (dwarfs) has not been thoroughly examined to date. Considering that some of the fish species show correlation between somatic growth and activity of telomerase, it has been tempting to assume that pattern of telomerase activity in specimens with retarded growth and these with normal growth rate may vary. In the present research, telomerase activity has been examined in liver, skin, and muscles in the androgenetic rainbow trout (Oncorhynchus mykiss) with growth deficiency and their normally developed siblings. Among the examined organs, the liver showed the highest telomerase activity in all studied fish, what may be linked to the enormous regeneration capacity of the liver tissue. Although dwarf specimens examined here displayed significantly lower body size and weight they did not exhibit any significant differences in the telomerase activity measured in liver and muscle when compared to the rainbow trout without growth deficiency. In turn, telomerase activity in skin was significantly upregulated in the normally developed androgenotes. The present study indicates that dwarfism in the androgenetic rainbow trout is neither associated with ceased telomerase activity nor its decrease throughout the ontogenetic development.
Collapse
Affiliation(s)
- Ligia Panasiak
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| | - Marcin Kuciński
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| | - Agata Błaszczyk
- Department of Marine Biotechnology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdynia, Poland
| |
Collapse
|
6
|
Ocalewicz K, Gurgul A, Polonis M, Dobosz S. Preliminary Identification of Candidate Genes Related to Survival of Gynogenetic Rainbow Trout ( Oncorhynchus mykiss) Based on Comparative Transcriptome Analysis. Animals (Basel) 2020; 10:ani10081326. [PMID: 32751994 PMCID: PMC7459965 DOI: 10.3390/ani10081326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
In the present research, the eggs from four rainbow trout females were used to provide four groups of gynogenetic doubled haploids (DHs). The quality of the eggs from different clutches was comparable, however, interclutch differences were observed in the gynogenetic variants of the experiment and the survival of DH specimens from different groups varied from 3% to 57% during embryogenesis. Transcriptome analysis of the eggs from different females exhibited inter-individual differences in the maternal genes' expression. Eggs originating from females whose gynogenetic offspring had the highest survival showed an increased expression of 46 genes when compared to the eggs from three other females. Eggs with the highest survival of gynogenetic embryos showed an up-regulation of genes that are associated with cell survival, migration and differentiation (tyrosine-protein kinase receptor TYRO3-like gene), triglyceride metabolism (carnitine O-palmitoyltransferase 1 gene), biosynthesis of polyunsaturated fat (3-oxoacyl-acyl-carrier-protein reductase gene), early embryogenic development (protein argonaute-3 gene, leucine-rich repeat-containing protein 3-like gene), 5S RNA binding (ribosome biogenesis regulatory protein homolog) as well as senescence and aging (telomerase reverse transcriptase, TERT gene), among others. Positive correlation between the genotypic efficiency and egg transcriptome profiles indicated that at least some of the differentially expressed genes should be considered as potential candidate genes for the efficiency of gynogenesis in rainbow trout.
Collapse
Affiliation(s)
- Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, 81-378 Gdynia, Poland;
- Correspondence:
| | - Artur Gurgul
- Centre for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, 30-248 Kraków, Poland;
| | - Marcin Polonis
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, 81-378 Gdynia, Poland;
| | - Stefan Dobosz
- Department of Salmonid Research, Inland Fisheries Institute in Olsztyn, Rutki, 83-330 Żukowo, Poland;
| |
Collapse
|
7
|
Tan WH, Witten PE, Winkler C, Au DWT, Huysseune A. Telomerase Expression in Medaka ( Oryzias melastigma) Pharyngeal Teeth. J Dent Res 2017; 96:678-684. [PMID: 28530472 DOI: 10.1177/0022034517694039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nonmammalian vertebrates have the capacity of lifelong tooth replacement. In all vertebrates, tooth formation requires contact and interaction between the oral or pharyngeal epithelium and the underlying mesenchyme. To secure lifelong replacement, the presence of odontogenic stem cells has been postulated, particularly in the epithelial compartment. This study uses an advanced teleost fish species, the marine medaka Oryzias melastigma, a close relative to Oryzias latipes, to examine the expression and distribution of telomerase reverse transcriptase (Tert), the catalytic unit of telomerase, in developing pharyngeal teeth and to relate these data to the proliferative activity of the cells. The data are complemented by expression analysis of the pluripotency marker oct4 and bona fide stem cell marker lgr5. Tert distribution and tert expression in developing tooth germs show a dynamic spatiotemporal pattern. Tert is present first in the mesenchyme but is downregulated as the odontoblasts differentiate. In contrast, in the epithelial enamel organ, Tert is absent during early stages of tooth formation and upregulated first in ameloblasts. Later, Tert is expressed and immunolocalized throughout the entire inner enamel epithelium. The pattern of Tert distribution is largely mutually exclusive with that of proliferating cell nuclear antigen (PCNA) immunoreactivity: highly proliferative cells, as revealed by PCNA staining, are negative for Tert; conversely, PCNA-negative cells are Tert-positive. Only the early condensed mesenchyme is both Tert- and PCNA-positive. The absence of tert-positive cells in the epithelial compartment of early tooth germs is underscored by the absence of oct4- and lgr5-positive cells, suggesting ways other than stem cell involvement to secure continuous renewal.
Collapse
Affiliation(s)
- W H Tan
- 1 Department of Biological Sciences, National University of Singapore, Singapore and NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | - P E Witten
- 2 Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - C Winkler
- 1 Department of Biological Sciences, National University of Singapore, Singapore and NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | - D W T Au
- 3 State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - A Huysseune
- 2 Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
de Abechuco EL, Hartmann N, Soto M, Díez G. Assessing the variability of telomere length measures by means of Telomeric Restriction Fragments (TRF) in different tissues of cod Gadus morhua. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Gao J, Munch SB. Does Reproductive Investment Decrease Telomere Length in Menidia menidia? PLoS One 2015; 10:e0125674. [PMID: 25938489 PMCID: PMC4418813 DOI: 10.1371/journal.pone.0125674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
Given finite resources, intense investment in one life history trait is expected to reduce investment in others. Although telomere length appears to be strongly tied to age in many taxa, telomere maintenance requires energy. We therefore hypothesize that telomere maintenance may trade off against other life history characters. We used natural variation in laboratory populations of Atlantic silversides (Menidia menidia) to study the relationship between growth, fecundity, life expectancy, and relative telomere length. In keeping with several other studies on fishes, we found no clear dependence of telomere length on age. However, we did find that more fecund fish tended to have both reduced life expectancy and shorter telomeres. This result is consistent with the hypothesis that there is a trade-off between telomere maintenance and reproductive output.
Collapse
Affiliation(s)
- Jin Gao
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (JG); (SBM)
| | - Stephan B. Munch
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail: (JG); (SBM)
| |
Collapse
|
10
|
Spitsbergen JM, Frattini SA, Bowser PR, Getchell RG, Coffee LL, Wolfe MJ, Fisher JP, Marinovic SJ, Harr KE. Epizootic neoplasia of the lateral line system of lake trout (Salvelinus namaycush) in New York's Finger Lakes. Vet Pathol 2013; 50:418-33. [PMID: 23528941 DOI: 10.1177/0300985813482949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article documents an epizootic of inflammation and neoplasia selectively affecting the lateral line system of lake trout (Salvelinus namaycush) in 4 Finger Lakes in New York from 1985 to 1994. We studied more than 100 cases of this disease. Tumors occurred in 8% (5/64) of mature and 21% (3/14) of immature lake trout in the most severely affected lake. Lesions consisted of 1 or more neoplasm(s) in association with lymphocytic inflammation, multifocal erosions, and ulcerations of the epidermis along the lateral line. Lesions progressed from inflammatory to neoplastic, with 2-year-old lake trout showing locally extensive, intense lymphocytic infiltrates; 2- to 3-year-old fish having multiple, variably sized white masses up to 3 mm in diameter; and fish over 5 years old exhibiting 1 or more white, cerebriform masses greater than 1 cm in diameter. Histologic diagnoses of the tumors were predominantly spindle cell sarcomas or benign or malignant peripheral nerve sheath neoplasms, with fewer epitheliomas and carcinomas. Prevalence estimates did not vary significantly between sexes or season. The cause of this epizootic remains unclear. Tumor transmission trials, virus isolation procedures, and ultrastructural study of lesions failed to reveal evidence of a viral etiology. The Finger Lakes in which the disease occurred did not receive substantially more chemical pollution than unaffected lakes in the same chain during the epizootic, making an environmental carcinogen an unlikely primary cause of the epizootic. A hereditary component, however, may have contributed to this syndrome since only fish of the Seneca Lake strain were affected.
Collapse
Affiliation(s)
- J M Spitsbergen
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Lim JS, Choi BS, Lee JS, Shin C, Yang TJ, Rhee JS, Lee JS, Choi IY. Survey of the Applications of NGS to Whole-Genome Sequencing and Expression Profiling. Genomics Inform 2012; 10:1-8. [PMID: 23105922 PMCID: PMC3475479 DOI: 10.5808/gi.2012.10.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 01/16/2023] Open
Abstract
Recently, the technologies of DNA sequence variation and gene expression profiling have been used widely as approaches in the expertise of genome biology and genetics. The application to genome study has been particularly developed with the introduction of the next-generation DNA sequencer (NGS) Roche/454 and Illumina/Solexa systems, along with bioinformation analysis technologies of whole-genome de novo assembly, expression profiling, DNA variation discovery, and genotyping. Both massive whole-genome shotgun paired-end sequencing and mate paired-end sequencing data are important steps for constructing de novo assembly of novel genome sequencing data. It is necessary to have DNA sequence information from a multiplatform NGS with at least 2× and 30× depth sequence of genome coverage using Roche/454 and Illumina/Solexa, respectively, for effective an way of de novo assembly. Massive short-length reading data from the Illumina/Solexa system is enough to discover DNA variation, resulting in reducing the cost of DNA sequencing. Whole-genome expression profile data are useful to approach genome system biology with quantification of expressed RNAs from a whole-genome transcriptome, depending on the tissue samples. The hybrid mRNA sequences from Rohce/454 and Illumina/Solexa are more powerful to find novel genes through de novo assembly in any whole-genome sequenced species. The 20× and 50× coverage of the estimated transcriptome sequences using Roche/454 and Illumina/Solexa, respectively, is effective to create novel expressed reference sequences. However, only an average 30× coverage of a transcriptome with short read sequences of Illumina/Solexa is enough to check expression quantification, compared to the reference expressed sequence tag sequence.
Collapse
Affiliation(s)
- Jong-Sung Lim
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | |
Collapse
|