1
|
Shao Y, Li Y, Wang D. Polylactic acid microplastics cause transgenerational reproductive toxicity associated with activation of insulin and hedgehog ligands in C. elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173746. [PMID: 38851356 DOI: 10.1016/j.scitotenv.2024.173746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
As a member of biodegradable plastics, exposure risk of polylactic acid microplastic (PLA-MP) has received attention recently. Toxicity of PLA-MP at parental generation (P0-G) has been observed in some organisms; however, its possible transgenerational toxicity and underlying mechanisms remain unclear. In Caenorhabditis elegans, 10 and 100 μg/L PLA-MP resulted in transgenerational inhibition in reproductive capacity and transgenerational damage on gonad development. Meanwhile, transgenerational increase in germline apoptosis was detected after PLA-MP exposure at P0-G, which was associated with transgenerational dysregulation in expressions of genes governing apoptosis (ced-3, ced-4, egl-1, and ced-9) and DNA damage related genes (cep-1, mrt-2, hus-1, and clk-2). Among secreted ligand genes, PLA-MP exposure induced transgenerational increase in expression of ins-39 and wrt-3, and RNAi of ins-39 and wrt-3 inhibited germline apoptosis in PLA-MP exposed nematodes. Additionally, PLA-MP caused transgenerational increase in expression of met-2 and set-6 encoding histone methylation transferases, and germline apoptosis induced by PLA-MP could be suppressed by RNAi of met-2 and set-6. Dysregulated expressions of some apoptosis and DNA damage related genes caused by PLA-MP were reversed by RNAi of ins-39, wrt-3, met-2, and set-6. Moreover, in PLA-MP exposed animals, expression of ins-39 and wrt-3 could be further inhibited by RNAi of met-2 and set-6. Therefore, PLA-MP potentially induced reproductive toxicity across multiple generations, which was under the control of MET-2 and SET-6 activated ligands of INS-39 and WRT-3.
Collapse
Affiliation(s)
- Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Garofalo G, Nielsen T, Caito S. Expression Profiling of Adipogenic and Anti-Adipogenic MicroRNA Sequences following Methylmercury Exposure in Caenorhabditis elegans. TOXICS 2023; 11:934. [PMID: 37999587 PMCID: PMC10674990 DOI: 10.3390/toxics11110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
MicroRNA (miRNA) are important regulators of gene expression that respond not only to developmental and pathological cues, but also to environmental stimuli. Dyslipidemia is a hallmark of metabolic conditions and has been shown to significantly affect the expression of circulating miRNA sequences. Recently, our lab has shown that the environmental toxicant methylmercury (MeHg) causes dyslipidemia in the Caenorhabditis elegans model organism. While 10 and 20 μM MeHg increases the expression of adipogenic transcription factors and lipid-binding proteins in worms, there is limited information on how the toxicant affects the miRNA regulators of these genes. We hypothesized that MeHg would increase the expression of adipogenic miRNA sequences and/or decrease the expression of anti-adipogenic miRNA sequences. We further hypothesized that the target mRNA sequences for the miRNAs affected by MeHg would be consequently altered. We selected three potentially adipogenic (mir-34, mir-124, and mir-355) and three potentially anti-adipogenic (mir-240, mir-786, and let-7) miRNA sequences homologous to known human miRNA sequences altered in obesity, and quantified their levels 24 h and 48 h post MeHg treatment. At 24 h post exposure, MeHg significantly increased expression of both the adipogenic and anti-adipogenic miRNA sequences 1.5-3x above untreated control. By 48 h post exposure, only the adipogenic miRNA sequences were elevated, while the anti-adipogenic miRNA sequences were decreased by 50% compared to untreated control. These data suggest that there are developmental changes in miRNA expression over time following MeHg exposure. We next selected one target mRNA sequence for each miRNA sequence based on miRNA-mRNA relationships observed in humans. MeHg altered the gene expression of all the target genes assayed. Except for mir-34, all the tested miRNA-mRNA sequences showed a conserved relationship between nematode and humans. To determine whether the selected miRNA sequences were involved in lipid accumulation in response to MeHg, lipid storage was investigated in transgenic worm strains that lacked the specific miRNA strains. Of the six strains investigated, only the mir-124 and let-7 mutant worms had lipid storage levels that were statistically different from wild type, suggesting that these two sequences can be potential mediators of MeHg-induced lipid dysregulation.
Collapse
Affiliation(s)
| | | | - Samuel Caito
- Department of Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, ME 04401, USA
| |
Collapse
|
3
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
4
|
Cediel-Ulloa A, Lindner S, Rüegg J, Broberg K. Epigenetics of methylmercury. Neurotoxicology 2023; 97:34-46. [PMID: 37164037 DOI: 10.1016/j.neuro.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Methylmercury (MeHg) is neurotoxic at high levels and particularly affects the developing brain. One proposed mechanism of MeHg neurotoxicity is alteration of the epigenetic programming. In this review, we summarise the experimental and epidemiological literature on MeHg-associated epigenetic changes. RECENT FINDINGS Experimental and epidemiological studies have identified changes in DNA methylation following in utero exposure to MeHg, and some of the changes appear to be persistent. A few studies have evaluated associations between MeHg-related changes in DNA methylation and neurodevelopmental outcomes. Experimental studies reveal changes in histone modifications after MeHg exposure, but we lack epidemiological studies supporting such changes in humans. Experimental and epidemiological studies have identified microRNA-related changes associated with MeHg; however, more research is needed to conclude if these changes lead to persistent and toxic effects. SUMMARY MeHg appears to interfere with epigenetic processes, potentially leading to persistent changes. However, observed associations of mercury with epigenetic changes are as of yet of unknown relevance to neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Andrea Cediel-Ulloa
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Sabrina Lindner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joëlle Rüegg
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
6
|
Ke T, Tinkov AA, Skalny AV, Santamaria A, Rocha JBT, Bowman AB, Chen W, Aschner M. Epigenetics and Methylmercury-Induced Neurotoxicity, Evidence from Experimental Studies. TOXICS 2023; 11:toxics11010072. [PMID: 36668798 PMCID: PMC9860901 DOI: 10.3390/toxics11010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
MeHg is an environmental neurotoxin that can adversely affect the development of the nervous system. The molecular integrity of chromatin in the nucleus is an important target of MeHg. Low levels of MeHg trigger epigenetic mechanisms that may be involved in long-lasting and transgenerational neurotoxicity after exposure. Emerging evidence has shown that these mechanisms include histone modification, siRNA, and DNA methylation. The MeHg-induced inhibition of neurodifferentiation and neurogenesis are mechanistically associated with epigenetic alterations in critical genes, such as neurotrophin brain-derived neurotrophic factor (BDNF). Further, MeHg exposure has been shown to alter the activity and/or expression of the upstream regulators of chromatin structure, including histone deacetylases (HDACs) and DNA methyltransferase (DNMTs), which may trigger permanent alterations in histone modifications and DNA methylation. MeHg-exposure also alters several species of miRNA that are associated with neurodevelopment. Genetic studies in the C. elegans model of MeHg-induced toxicity proposes a potential interplay between exogenous RNAi and antioxidant defense. In this review, we discuss the molecular basis for MeHg exposure-induced alterations in chromatin structure and the roles of histone modifications, siRNA, and DNA methylation in MeHg-induced neurotoxic effects.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (T.K.); (M.A.)
| | - Alexey A. Tinkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Department of Medical Elementology, RUDN University, 117198 Moscow, Russia
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Medical Elementology, RUDN University, 117198 Moscow, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (T.K.); (M.A.)
| |
Collapse
|
7
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
8
|
Nielsen T, Crawford N, Martell M, Khalil B, Imtiaz F, Newell-Caito JL, Caito S. MicroRNA Expression Influences Methylmercury-Induced Lipid Accumulation and Mitochondrial Toxicity in Caenorhabditis elegans. Chem Res Toxicol 2021; 35:77-88. [PMID: 34905692 DOI: 10.1021/acs.chemrestox.1c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic effects of methylmercury (MeHg) are gaining wider attention. We have previously shown that MeHg causes lipid dysregulation in Caenorhabditis elegans (C. elegans), leading to altered gene expression, increased triglyceride levels and lipid storage, and altered feeding behaviors. Transcriptional regulators, such as transcription factors and microRNAs (miRNAs), have been shown to regulate lipid storage, serum triglycerides, and adipogenic gene expression in human and rodent models of metabolic diseases. As we recently investigated adipogenic transcription factors induced by MeHg, we were, therefore, interested in whether MeHg may also regulate miRNA sequences to cause metabolic dysfunction. Lipid dysregulation, as measured by triglyceride levels, lipid storage sites, and feeding behaviors, was assessed in wild-type (N2) worms and in transgenic worms that either were sensitive to miRNA expression or were unable to process miRNAs. Worms that were sensitive to the miRNA expression were protected from MeHg-induced lipid dysregulation. In contrast, the mutant worms that were unable to process miRNAs had exacerbated MeHg-induced lipid dysregulation. Concurrent with differential lipid homeostasis, miRNA-expression mutants had altered MeHg-induced mitochondrial toxicity as compared to N2, with the miRNA-sensitive mutants showing mitochondrial protection and the miRNA-processing mutants showing increased mitotoxicity. Taken together, our data demonstrate that the expression of miRNAs is an important determinant in MeHg toxicity and MeHg-induced metabolic dysfunction in C. elegans.
Collapse
Affiliation(s)
- Tyson Nielsen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Megan Martell
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Belal Khalil
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Farooq Imtiaz
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Jennifer L Newell-Caito
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine 04469, United States
| | - Samuel Caito
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| |
Collapse
|
9
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Caito SW, Newell-Caito J, Martell M, Crawford N, Aschner M. Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor. Toxicol Sci 2021; 174:112-123. [PMID: 31851340 DOI: 10.1093/toxsci/kfz244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. We have previously shown that MeHg causes metabolic alterations in Caenorhabditis elegans, leading to decreased nicotinamide adenine dinucleotide cofactor, mitochondrial dysfunction, and oxidative stress. We were, therefore, interested in whether MeHg also affects nutrient metabolism, particularly lipid homeostasis, which may contribute to the development of metabolic conditions such as obesity or metabolic syndrome (MS). RNA from wild-type worms exposed to MeHg was collected immediately after treatment and used for gene expression analysis by DNA microarray. MeHg differentially regulated 215 genes, 17 genes involved in lipid homeostasis, and 12 genes involved in carbohydrate homeostasis. Of particular interest was cebp-1, the worm ortholog to human C/EBP, a pro-adipogenic transcription factor implicated in MS. MeHg increased the expression of cebp-1 as well as pro-adipogenic transcription factors sbp-1 and nhr-49, triglyceride synthesis enzyme acl-6, and lipid transport proteins vit-2 and vit-6. Concurrent with the altered gene expression, MeHg increased triglyceride levels, lipid storage, and feeding behaviors. Worms expressing mutant cebp-1 were protected from MeHg-induced alterations in lipid content, feeding behaviors, and gene expression, highlighting the importance of this transcription factor in the worm's response to MeHg. Taken together, our data demonstrate that MeHg induces biochemical, metabolic, and behavioral changes in C. elegans that can lead to metabolic dysfunction.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | | | - Megan Martell
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
11
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Camacho J, Truong L, Kurt Z, Chen YW, Morselli M, Gutierrez G, Pellegrini M, Yang X, Allard P. The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1. Cell Rep 2019; 23:2392-2404. [PMID: 29791850 PMCID: PMC6003705 DOI: 10.1016/j.celrep.2018.04.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
How artificial environmental cues are biologically integrated and transgenerationally inherited is still poorly understood. Here, we investigate the mechanisms of inheritance of reproductive outcomes elicited by the model environmental chemical Bisphenol A in C. elegans. We show that Bisphenol A (BPA) exposure causes the derepression of an epigenomically silenced transgene in the germline for 5 generations, regardless of ancestral response. Chromatin immunoprecipitation sequencing (ChIP-seq), histone modification quantitation, and immunofluorescence assays revealed that this effect is associated with a reduction of the repressive marks H3K9me3 and H3K27me3 in whole worms and in germline nuclei in the F3, as well as with reproductive dysfunctions, including germline apoptosis and embryonic lethality. Furthermore, targeting of the Jumonji demethylases JMJD-2 and JMJD-3/UTX-1 restores H3K9me3 and H3K27me3 levels, respectively, and it fully alleviates the BPA-induced transgenerational effects. Together, our results demonstrate the central role of repressive histone modifications in the inheritance of reproductive defects elicited by a common environmental chemical exposure.
Collapse
Affiliation(s)
- Jessica Camacho
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lisa Truong
- Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Molecular, Cell and Developmental Biology Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerardo Gutierrez
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Environmental and Occupational Health, California State University, Northridge, CA 91330, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Methylmercury Epigenetics. TOXICS 2019; 7:toxics7040056. [PMID: 31717489 PMCID: PMC6958348 DOI: 10.3390/toxics7040056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.
Collapse
|
14
|
Chen M, Wang F, Cao JJ, Han X, Lu WW, Ji X, Chen WH, Lu WQ, Liu AL. (-)-Epigallocatechin-3-gallate attenuates the toxicity of methylmercury in Caenorhabditis elegans by activating SKN-1. Chem Biol Interact 2019; 307:125-135. [PMID: 31047916 DOI: 10.1016/j.cbi.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) found in tea is a natural activator of nuclear factor erythroid 2-related factor 2 (Nrf2), a primary regulator of the cellular defense system. The adverse health effects resulting from methylmercury (MeHg) exposure in humans are of worldwide concern. We hypothesized that EGCG could induce a Nrf2-mediated protective response to antagonize MeHg toxicity. Using the Caenorhabditis elegans (C. elegans) nematode model, we observed that EGCG activated SKN-1 (the functional ortholog of Nrf2 in C. elegans), as shown by the increased skn-1 mRNA level, induction of the gene gst-4, and enhanced SKN-1-mediated oxidative stress resistance that were indicated by elevation of total antioxidant ability and reductions in reactive oxygen species and malondialdehyde. Following exposure to MeHg, EGCG-treated C. elegans displayed increased survival rates, improved locomotion behaviors, decreased numbers of damaged neurons, and reduced oxidative damage compared to the controls. Moreover, the protective effects of EGCG against MeHg toxicity were counteracted by RNA-mediated interference of skn-1. These results demonstrated that EGCG could alleviate MeHg toxicity by upregulating the SKN-1-regulated protective response in C. elegans. Our study suggests a potentially beneficial effect of targeting Nrf2 by dietary EGCG in protecting humans against MeHg toxicity.
Collapse
Affiliation(s)
- Mo Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing-Jing Cao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xue Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei-Wei Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xin Ji
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei-Hong Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
15
|
Chatterjee N, Gim J, Choi J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018015-0. [PMID: 30286591 PMCID: PMC6182246 DOI: 10.5620/eht.e2018015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
Epigenetics, potentially heritable changes in genome function that occur without alterations to DNA sequence, is an important but understudied component of ecotoxicology studies. A wide spectrum of environmental challenge, such as temperature, stress, diet, toxic chemicals, are known to impact on epigenetic regulatory mechanisms. Although the role of epigenetic factors in certain biological processes, such as tumourigenesis, has been heavily investigated, in ecotoxicology field, epigenetics still have attracted little attention. In ecotoxicology, potential role of epigenetics in multi- and transgenerational phenomenon to environmental stressors needs to be unrevealed. Natural variation in the epigenetic profiles of species in responses to environmental stressors, nature of dose-response relationships for epigenetic effects, and how to incorporate this information into ecological risk assessment should also require attentions. In this review, we presented the available information on epigenetics in ecotoxicological context. For this, we have conducted a systemic review on epigenetic profiling in response to environmental stressors, mostly chemical exposure, in model organisms, as well as, in ecotoxicologically relevant wildlife species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jiwan Gim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
16
|
Sex-Specific Response of Caenorhabditis elegans to Methylmercury Toxicity. Neurotox Res 2018; 35:208-216. [DOI: 10.1007/s12640-018-9949-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
17
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|