1
|
Du YW, Liu L, Feng NJ, Zheng DF, Liu ML, Zhou H, Deng P, Wang YX, Zhao HM. Combined transcriptomic and metabolomic analysis of alginate oligosaccharides alleviating salt stress in rice seedlings. BMC PLANT BIOLOGY 2023; 23:455. [PMID: 37770835 PMCID: PMC10540332 DOI: 10.1186/s12870-023-04470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and β -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.
Collapse
Affiliation(s)
- You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Mei-Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ya-Xing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Picone M, Russo M, Distefano GG, Baccichet M, Marchetto D, Volpi Ghirardini A, Lunde Hermansson A, Petrovic M, Gros M, Garcia E, Giubilato E, Calgaro L, Magnusson K, Granberg M, Marcomini A. Impacts of exhaust gas cleaning systems (EGCS) discharge waters on planktonic biological indicators. MARINE POLLUTION BULLETIN 2023; 190:114846. [PMID: 36965268 PMCID: PMC10152311 DOI: 10.1016/j.marpolbul.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Exhaust Gas Cleaning Systems (EGCS), operating in open-loop mode, continuously release acidic effluents (scrubber waters) to marine waters. Furthermore, scrubber waters contain high concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs, potentially affecting the plankton in the receiving waters. Toxicity tests evidenced significant impairments in planktonic indicators after acute, early-life stage, and long-term exposures to scrubber water produced by a vessel operating with high sulphur fuel. Acute effects on bacterial bioluminescence (Aliivibrio fischeri), algal growth (Phaeodactylum tricornutum, Dunaliella tertiolecta), and copepod survival (Acartia tonsa) were evident at 10 % and 20 % scrubber water, while larval development in mussels (Mytilus galloprovincialis) showed a 50 % reduction at ∼5 % scrubber water. Conversely, larval development and reproductive success of A. tonsa were severely affected at scrubber water concentrations ≤1.1 %, indicating the risk of severe impacts on copepod populations which in turn may result in impairment of the whole food web.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Martina Russo
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Anna Lunde Hermansson
- Chalmers University of Technology, Department of Mechanics and Maritime Sciences, Hörselgången 4, 41756 Göteborg, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig lluís companys 23, 08010 Barcelona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Garcia
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Loris Calgaro
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Kerstin Magnusson
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Maria Granberg
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
3
|
López-Landavery EA, Amador-Cano G, Tripp-Valdez MA, Ramírez-Álvarez N, Cicala F, Gómez-Reyes RJE, Díaz F, Re-Araujo AD, Galindo-Sánchez CE. Hydrocarbon exposure effect on energetic metabolism and immune response in Crassostrea virginica. MARINE POLLUTION BULLETIN 2022; 180:113738. [PMID: 35635877 DOI: 10.1016/j.marpolbul.2022.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Crassostrea virginica was exposed to different light crude oil levels to assess the effect on transcriptomic response and metabolic rate. The exposure time was 21 days, and levels of 100 and 200 μg/L were used, including a control. The most significant difference among treatments was the overexpression of several genes associated with energy production, reactive oxygen species (ROS) regulation, immune system response, and inflammatory response. Also, a hydrocarbon concentration-related pattern was identified in ROS regulation, with a gene expression ratio near 1.8:1 between 200 and 100 μg/L treatments. Statistical analysis showed no interaction effect for metabolic rate; however, significant differences were found for oil concentration and time factors, with a higher oxygen consumption at 200 μg/L. Our findings provide novel information about the metabolic response of C. virginica during hydrocarbons exposure. In addition, our results point out which biological processes should be investigated as targets for searching bioindicators.
Collapse
Affiliation(s)
- E A López-Landavery
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico; Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - G Amador-Cano
- Universidad Tecnológica del Mar de Tamaulipas Bicentenario, La Pesca, Soto La Marina, Tamaulipas, Mexico
| | - M A Tripp-Valdez
- Departamento de Acuicultura, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - N Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada No. 3917, Ensenada, BC, Mexico
| | - F Cicala
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - R J E Gómez-Reyes
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico; Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Tijuana-Ensenada No. 3917, Ensenada, BC, Mexico
| | - F Díaz
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - A D Re-Araujo
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - C E Galindo-Sánchez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico.
| |
Collapse
|
4
|
Harðardóttir HM, Male R, Nilsen F, Dalvin S. Chitin Synthases Are Critical for Reproduction, Molting, and Digestion in the Salmon Louse ( Lepeophtheirus salmonis). Life (Basel) 2021; 11:life11010047. [PMID: 33450932 PMCID: PMC7828418 DOI: 10.3390/life11010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut. Lepeophtheirus salmonis is an ectoparasitic copepod on salmonid fish, which causes significant economic losses in aquaculture. In the present study, the tissue-specific localization, expression, and functional role of L. salmonis chitin synthases, LsCHS1 and LsCHS2, were investigated. The expressions of LsCHS1 and LsCHS2 were found in oocytes, ovaries, intestine, and integument. Wheat germ agglutinin (WGA) chitin staining signals were detected in ovaries, oocytes, intestine, cuticle, and intestine in adult female L. salmonis. The functional roles of the LsCHSs were investigated using RNA interference (RNAi) to silence the expression of LsCHS1 and LsCHS2. Knockdown of LsCHS1 in pre-adult I lice resulted in lethal phenotypes with cuticle deformation and deformation of ovaries and oocytes in adult lice. RNAi knockdown of LsCHS2 in adult female L. salmonis affected digestion, damaged the gut microvilli, reduced muscular tissues around the gut, and affected offspring. The results demonstrate that both LsCHS1 and LsCHS2 are important for the survival and reproduction in L. salmonis.
Collapse
Affiliation(s)
- Hulda María Harðardóttir
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
- Correspondence:
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway;
| |
Collapse
|
5
|
Hiki K, Nakajima F, Tobino T, Watanabe H, Yamamoto H. Whole transcriptome analysis of an estuarine amphipod exposed to highway road dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:141-150. [PMID: 31026638 DOI: 10.1016/j.scitotenv.2019.04.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Urban road dust can potentially have adverse effects on aquatic and benthic ecosystems if discharged into receiving waters; however, little is known about the mode of action of road dust toxicity within aquatic organisms. With an aim to reveal the biological effects of road dust on benthic crustacean species, we performed a de novo transcriptome analysis of the estuarine amphipod Grandidierella japonica exposed to road dust collected from highways around Tokyo. A transcriptome analysis by Illumina HiSeq 2500 identified differentially expressed genes related to the gamma-aminobutyric acid (GABA) signaling pathway, oxidative damage, and cuticle metabolism. Among these, a GABAB receptor subunit showed down-regulation in the road dust treatment, but a constant expression in the treatment of road dust with a carbonaceous resin XAD-4, which can reduce the acute toxicity of road dust to G. japonica. These results and the time course expressions of the related genes were partially confirmed by quantitative PCR (qPCR) experiments. Although the linkage between acute lethal toxicity and the molecular initiating events induced by road dust was still unclear, our findings provide lines of evidence to identify the causative toxicants in urban road dust.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan; Department of Urban Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Haruna Watanabe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Yamamoto
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|