1
|
Guo X, Shen M, Jiang S, Xing X, Zhang C, Yin S, Zhang K. Novel insights into copper-induced Chinese mitten crab hepatopancreas mitochondrial toxicity: Oxidative stress, apoptosis and BNIP3L-mediated mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107335. [PMID: 40168791 DOI: 10.1016/j.aquatox.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Copper (Cu) is an important metal pollutant commonly found in aquatic environment. Cu-based nanoparticles (NPs) have been increasingly fabricated, and led to cytotoxicity in aquatic animals. Herein, the mechanisms underlying the CuSO4/Cu-NPs-mediated perturbation of the hepatopancreatic mitochondrial function at different concentrations were investigated and compared. After exposing Eriocheir sinensis to 0 (control), 5, 50, and 500 μg/L CuSO4 and 10 μg/L Cu-NPs for 21 days, hepatopancreases were retrieved. The results revealed that Cu-NPs or excess CuSO4 induced ultrastructural damage following a time-dose effect, as indicated by swelling and degeneration of the lumen of hepatic tubules. Cu-NPs or excess CuSO4 exposure decreased the antioxidative capacity and led to the over-accumulation of reactive oxygen species (ROS). Moreover, the mitochondrial membrane potential (MMP) was reduced and apoptosis induced. Additionally, both CuSO4 and Cu-NPs increased the numbers of mitophagosomes and the mRNA and protein levels of microtubule associated protein 1 light chain 3 beta (LC3B), and triggered mitophagy through BCL2 interacting protein 3 like (BNIP3L)/Beclin1 pathway. Altogether, this study provides a basis for exploring Cu-mediated potential mitochondrial autophagy activation mechanisms, uncovered the difference between CuSO4 and Cu-NPs.
Collapse
Affiliation(s)
- Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Minghao Shen
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Xiumei Xing
- Nanjing Gaochun District Qingsong Aquatic Professional Cooperative, Nanjing 211300, PR China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| |
Collapse
|
2
|
Baracchini C, Messager L, Stocker P, Leignel V. The Impacts of the Multispecies Approach to Caffeine on Marine Invertebrates. TOXICS 2023; 12:29. [PMID: 38250985 PMCID: PMC10823422 DOI: 10.3390/toxics12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Caffeine is one of the most consumed substances by humans through foodstuffs (coffee, tea, drugs, etc.). Its human consumption releases a high quantity of caffeine into the hydrological network. Thus, caffeine is now considered an emergent pollutant sometimes found at high concentrations in oceans and seas. Surprisingly, little research has been conducted on the molecular responses induced by caffeine in marine organisms. We studied, in laboratory conditions, six phylogenetically distant species that perform distinct ecological functions (Actinia equina and Aulactinia verrucosa (cnidarians, predator), Littorina littorea (gastropod, grazer), Magallana gigas (bivalve, filter-feeder), and Carcinus maenas and Pachygrapsus marmoratus (crabs, predator and scavenger)) subjected to caffeine exposure. The antioxidant responses (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), lipid peroxidation (MDA), and the acetylcholinesterase (AChE) activity were estimated when the organisms were exposed to environmental caffeine concentrations (5 μg/L (low), 10 μg/L (high)) over 14 days. Differential levels of responses and caffeine effects were noted in the marine invertebrates, probably in relation to their capacity to metabolization the pollutant. Surprisingly, the filter feeder (M. gigas, oyster) did not show enzymatic responses or lipid peroxidation for the two caffeine concentrations tested. The marine gastropod (grazer) appeared to be more impacted by caffeine, with an increase in activities for all antioxidative enzymes (CAT, GPx, SOD). In parallel, the two cnidarians and two crabs were less affected by the caffeine contaminations. However, caffeine was revealed as a neurotoxic agent to all species studied, inducing high inhibition of AChE activity. This study provides new insights into the sublethal impacts of caffeine at environmentally relevant concentrations in marine invertebrates.
Collapse
Affiliation(s)
| | | | | | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Venue Olivier Messiaen, 72085 Le Mans, France; (C.B.); (P.S.)
| |
Collapse
|
3
|
Nogueira AF, Nunes B. Cholinesterase characterization and effects of the environmental contaminants chlorpyrifos and carbofuran on two species of marine crabs, Carcinus maenas and Pachygrapsus marmoratus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14681-14693. [PMID: 33216299 DOI: 10.1007/s11356-020-11492-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Among the most frequent targets for toxic effects of modern pesticides, namely organophosphates and carbamates, one may find cholinesterases (ChEs). ChEs exist in a wide variety of animals and have been used actively to discriminate among the environmental effects of different pollutant groups, including the aforementioned pesticides. This study had three purposes, namely (i) identifying the ChE forms present in tissues (eyes and walking legs muscle) of two crab species, Carcinus maenas and Pachygrapsus marmoratus; to (ii) determine the in vitro toxicological effects, and (iii) compare the sensitivity of such enzymatic forms towards commonly used anti-ChE pesticides, namely the organophosphate chlorpyrifos and the carbamate carbofuran. Our results showed that there was not a clear preference for any of the tested substrates in any of the tissues from both species. Furthermore, the ChE activity was almost completely suppressed following incubation with eserine and with the specific inhibitor BW284C51 in all tissues from both species. In vitro exposure to chlorpyrifos promoted a significant decrease in ChE activity in both species. Furthermore, the ChE activity was completely suppressed following incubation with carbofuran and chlorpyrifos. These results suggest that the major ChE forms present in tissues of both crab species show intermediate structural properties and activity patterns, halfway between classic acetylcholinesterase and pseudocholinesterases. However, the sensitivity of the found forms towards ChE inhibitors was established, and the responsiveness of such forms towards common anti-ChE chemicals was established. Both tested species seem to be promising test organisms to be used in marine and coastal scenarios of putative contaminations by anti-ChE chemicals, considering the here reported patterns of response.
Collapse
Affiliation(s)
- Ana Filipa Nogueira
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Deidda I, Russo R, Bonaventura R, Costa C, Zito F, Lampiasi N. Neurotoxicity in Marine Invertebrates: An Update. BIOLOGY 2021; 10:161. [PMID: 33670451 PMCID: PMC7922589 DOI: 10.3390/biology10020161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Collapse
|
5
|
Cuccaro A, De Marchi L, Oliva M, Sanches MV, Freitas R, Casu V, Monni G, Miragliotta V, Pretti C. Sperm quality assessment in Ficopomatus enigmaticus (Fauvel, 1923): Effects of selected organic and inorganic chemicals across salinity levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111219. [PMID: 32931966 DOI: 10.1016/j.ecoenv.2020.111219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Contamination by organic and inorganic compounds remains one of the most complex problems in both brackish and marine environments, causing potential implications for the reproductive success and survival of several broadcast spawners. Ficopomatus enigmaticus is a tubeworm polychaete that has previously been used as a model organism for ecotoxicological analysis, due to its sensitivity and ecological relevance. In the present study, the effects of five trace elements (zinc, copper, cadmium, arsenic and lead), one surfactant (sodium dodecyl sulfate, SDS) and one polycyclic aromatic hydrocarbon (benzo(a)pyrene, B(a)P) on the sperm quality of F. enigmaticus were investigated. Sperm suspensions were exposed in vitro to different concentrations of each selected contaminant under four salinity conditions (10, 20, 30, 35). Possible adverse effects on sperm function were assessed by measuring oxidative stress, membrane integrity, viability and DNA damage. Sperm quality impairments induced by organic contaminants were more evident than those induced by inorganic compounds. SDS exerted the largest effect on sperm. In addition, F. enigmaticus sperm showed high tolerance to salinity variation, supporting the wide use of this species as a promising model organism for ecotoxicological assays. Easy and rapid methods on polychaete spermatozoids were shown to be effective as integrated sperm quality parameters or as an alternative analysis for early assessment of marine and brackish water pollution.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Casu
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy.
| |
Collapse
|