1
|
Huang Z, Chen C, Guan K, Xu S, Chen X, Lin Y, Li X, Shan Y. Protective role of ghrelin against 6PPD-quinone-induced neurotoxicity in zebrafish larvae (Danio rerio) via the GHSR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117031. [PMID: 39341137 DOI: 10.1016/j.ecoenv.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
The toxicity mechanisms of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), an antioxidant derivative of 6PPD via ozone reaction commonly used in rubber and tire industries, were investigated in zebrafish larvae with concentrations ranging from 0 to 50 μg/L. Despite normal hatchability, 6PPD-Q exposure led to reduced body length and swimming distance in 120 hours post-fertilization (hpf) larvae. At the highest concentration (50 μg/L), 6PPD-Q significantly impaired dopaminergic neuron development and neurotransmitter levels, including dopamine, 5-hydroxytryptamine, and glutamate. Transcriptome profiling unveiled perturbations in growth and developmental gene expression, such as upregulation of runx2a, runx2b, and ghrl (ghrelin and obestatin prepropeptide), and downregulation of stat1b, auto1, and cidea. Notably, anamorelin, a growth hormone secretagogue receptor (GHSR) agonist, recovered the behavioral deficits induced by 6PPD-Q, implying a neuroprotective role of ghrelin possibly mediated via the ghrelin/GHSR pathway. Collectively, our findings indicate that ghrelin upregulation may counteract 6PPD-Q toxicity in zebrafish larvae, shedding light on potential therapeutic avenues for mitigating the adverse effects of this antioxidant byproduct.
Collapse
Affiliation(s)
- Zhengwei Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihao Lin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Yunfeng Shan
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Guan K, Ye M, Guo A, Chen X, Shan Y, Li X. Deficiency of leap2 promotes somatic growth in zebrafish: Involvement of the growth hormone system. Heliyon 2024; 10:e36397. [PMID: 39347412 PMCID: PMC11437977 DOI: 10.1016/j.heliyon.2024.e36397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Liver-expressed antimicrobial peptide-2 (LEAP2) is identified as an endogenous antagonist and inverse agonist of the growth hormone secretagogue receptor type 1a (GHSR1a), its effect on the GHSR1a is contrary to the role of GHRELIN. Growth hormone (GH) is a crucial hormone for early development. Previous studies report that LEAP2 dose-dependently attenuates ghrelin-induced GH secretion, and Leap2-knockout mice exhibit increased plasma GH levels after GHRELIN administration. Clinical data revealed a possible correlation between LEAP2 and height development. However, the role of LEAP2 in early development remains unclear. This study aimed to investigate the role of LEAP2 in early development using leap2 mutant zebrafish larvae as a model. Method We analyzed the conservation of LEAP2 peptide across multiple species and generated leap2 mutants in zebrafish by CRISPR-Cas9, dynamically observed and measured the growth and development of zebrafish larvae from fertilization to 5 day post fertilization (dpf). In situ hybridization, transcriptome sequencing, quantitative real-time PCR and Western blot were used to detect the expression levels of GH and its signaling in early stage of embryonic development. Result Our data demonstrate that zebrafish with a knockout of the leap2 gene display a significant increase in hatching rate, body length, and the distance between their eyes, all without visible developmental defects in the early stages of development. In addition, both RNA and protein analyses revealed a significant increase in GH expression in leap2 mutant. Conclusion In general, this study demonstrates that LEAP2 regulates the expression of GH during early development, particularly influencing body length.
Collapse
Affiliation(s)
- Kaiyu Guan
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Minjie Ye
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anqi Guo
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoyu Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunfeng Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Li
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
3
|
Luo Y, Zheng M, Su Z, Cai C, Li X. Transcriptome profile of reserpine-induced locomotor behavioral changes in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110874. [PMID: 37839537 DOI: 10.1016/j.pnpbp.2023.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Reserpine is a drug that is commonly used as an antihypertensive and antipsychotic drug in clinical practice. During our previous research, we found that reserpine treatment in zebrafish larvae can cause depression-like behaviors, but the corresponding mechanisms are still unclear. In this study, we aimed to investigate the molecular mechanism by which reserpine exposure affects locomotor behaviors in larval zebrafish through transcriptome analysis. The gene enrichment results showed that the differentially highly expressed genes of zebrafish are mainly enriched in voltage-gated ion channels, dopaminergic synapses and wnt signaling pathways. Selected genes (apc2, cacna1aa, drd2b, dvl1a, fzd1, wnt1, wnt3a, wnt9a and wnt10a) by transcriptomic results was validated by real-time PCR. Consistently, Wnt signaling pathway inhibitor XAV939 may induce reduced behavioral changes in zebrafish larvae, while the Wnt signaling pathway agonist SB415286 reversed the reserpine-induced depressive effects. Our study provides gene transcriptional profile data for future research on reserpine-induced locomotor behavioral changes.
Collapse
Affiliation(s)
- Yacan Luo
- Department of Respiratory & Critical Care Medicine, YueYang People' s Hospital, Yueyang, Hunan 414000, People's Republic of China; Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Zheng
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhengkang Su
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chang Cai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xi Li
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Gericke J, Harvey BH, Pretorius L, Ollewagen T, Benecke RM, Smith C. Sceletium tortuosum-derived mesembrine significantly contributes to the anxiolytic effect of Zembrin®, but its anti-depressant effect may require synergy of multiple plant constituents. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117113. [PMID: 37660956 DOI: 10.1016/j.jep.2023.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sceletium tortuosum (L.) N.E.Br. (ST) is an alkaloid-rich succulent plant with various mechanisms of action that infer psychotropic effects. These actions correlate with clinical evidence suggesting efficacy in the treatment of depression and anxiety, in line with its use by indigenous populations. Its low side effect profile suggests potential of ST to improve the overall wellbeing and compliance of millions of patients that experience severe side effects and/or do not respond to current prescription medication. However, to elucidate specific physiological effects of ST extracts, it is necessary to first understand which of its constituents are the major contributors to beneficial effects demonstrated for ST in this context. AIM OF THE STUDY To determine an anxiolytic- and antidepressant-like effective concentration of a ST extract by means of a dose response in zebrafish (ZF) larvae, and to assess relative contributions of equivalent concentrations of isolated alkaloids contained in the effective concentration(s). MATERIALS AND METHODS A dose response study employing a light-dark transition test (LDTT) was done in ZF larvae (<5 days post fertilization) to track locomotor activity in terms of anxiety-like (hyperlocomotion) and depression-like (hypolocomotion) behaviour. Larvae were treated for 1 h directly before the LDTT with escalating concentrations of a ST extract commercially known as Zembrin® (Zem) ranging from 0.25 to 500 μg/mL and compared to an untreated control group (n = 12 per treatment concentration). LDTT was repeated after 24 h to evaluate long-term exposure toxicity. The concentration that best attenuated hyperlocomotion during the dark phase following light-dark transition was identified as the anxiolytic-like concentration. This concentration, plus one higher and one lower concentration, were used for subsequent tests. The percentage content of each alkaloid (mesembrine, mesembrenone, mesembrenol, and mesembranol) in these concentrations were calculated and applied to additional larvae to identify the most effective anxiolytic-like alkaloid in the LDTT. To identify antidepressant-like therapeutic concentration and equivalent alkaloid concentration, the same treatment concentrations were tested in larvae (n = 12 per treatment concentration) pre-exposed to reserpine for 24 h. Depending on normality of data distribution, Brown-Forsythe and Welch, or Kruskal-Wallis ANOVA were used, with Dunnett or Dunn's multiple comparisons tests. RESULTS Only the extreme concentration of Zem (500 μg/mL) elicited toxicity after treatment for 24 h. Zem 12.5 μg/mL was the most effective anxiolytic-like concentration as it significantly decreased locomotor activity (P = 0.05) in the LDTT. Low (5 μg/mL), optimal (12.5 μg/mL) and high (25 μg/mL) Zem concentrations, as well as treatment solutions of single alkaloids (mesembrine, mesembrenone, mesembranol and mesembrenol), prepared to contain equivalent concentrations of each major alkaloid contained within these three concentrations of Zem, were tested further. Only mesembrine concentrations equal to that contained within the optimal and high dose of Zem (12.5 and 25 μg/mL) showed significant anxiolytic-like effects (P < 0.05). Only the highest Zem concentration (25 μg/mL) reversed the effects of reserpine - indicating antidepressant-like properties (P < 0.05) - while isolated alkaloids failed to induce such effects when administered in isolation. CONCLUSIONS Current data provide evidence of both anxiolytic- and antidepressant-like effect of whole extract of Zem, with relatively higher concentrations required to achieve antidepressant-like effect. Of all alkaloids assessed, only mesembrine contributed significantly to the anxiolytic-like effects of Zem. No alkaloid alone could be pinpointed as a contributor to the antidepressant-like activity observed for higher concentration Zem. This may be due to synergistic effects of the alkaloids or may be due to other components not tested here. Current data warrants further investigation into mechanisms of action, as well as potential synergy, of ST alkaloids in suitable mammalian in vivo models.
Collapse
Affiliation(s)
- Johané Gericke
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Lesha Pretorius
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Rohan M Benecke
- Division Clinical Pharmacology, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Carine Smith
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
Mahapatra A, Gupta P, Suman A, Ray SS, Singh RK. PFOS-induced dyslipidemia and impaired cholinergic neurotransmission in developing zebrafish: Insight into its mechanisms. Neurotoxicol Teratol 2023; 100:107304. [PMID: 37805080 DOI: 10.1016/j.ntt.2023.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that has been widely detected in the environment and is known to accumulate in organisms, including humans. The study investigated dose-dependent mortality, hatching rates, malformations, lipid accumulation, lipid metabolism alterations, and impacts on cholinergic neurotransmission. Increasing PFOS concentration led to higher mortality, hindered hatching, and caused concentration-dependent malformations, indicating severe abnormalities in developing zebrafish. The results also demonstrated that PFOS exposure led to a significant increase in total lipids, triglycerides, total cholesterol, and LDL in a concentration-dependent manner, while HDL cholesterol levels were significantly decreased. Additionally, PFOS exposure led to a significant decrease in glucose levels. The study identified TGs, TCHO, and glucose as the most sensitive biomarkers in assessing lipid metabolism alterations. The study also revealed altered expression of genes involved in lipid metabolism, including upregulation of fasn, acaca, and hmgcr and downregulation of ldlr, pparα, and abca1, as well as decreased lipoprotein lipase (LPL) and increased fatty acid synthase (FAS) activity,suggesting an impact on fatty acid synthesis, cholesterol uptake, and lipid transport. Additionally, PFOS exposure led to impaired cholinergic neurotransmission, evidenced by a concentration-dependent inhibition of acetylcholinesterase activity, altered gene expressions related to neural development and function, and reduced Na+/K+-ATPase activity. STRING network analysis highlighted two distinct gene clusters related to lipid metabolism and cholinergic neurotransmission, with potential interactions through the pparα-creb1 pathway. Overall, this study provide important insights into the potential health risks associated with PFOS exposure, including dyslipidemia, cardiovascular disease, impaired glucose metabolism, and neurotoxicity. Further research is needed to fully elucidate the underlying mechanisms and potential long-term effects of PFOS exposure.
Collapse
Affiliation(s)
- Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
6
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Su Z, Qin F, Zhang H, Huang Z, Guan K, Zheng M, Dai Z, Song W, Li X. Evaluation of developmental toxicity of safinamide in zebrafish larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115284. [PMID: 37556957 DOI: 10.1016/j.ecoenv.2023.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Monoamine oxidase-B (MAO-B), as a principal metabolizing enzyme, plays important roles in the metabolism of catecholamines and xenobiotics in the central nervous system and peripheral tissues. Safinamide, the third-generation reversible MAO-B inhibitor, has potential to alleviate many neurological diseases such as Parkinson's disease (PD) and depression. Exposure to clinical psychotropic drugs often has adverse effects on fetuses. Currently, a variety of studies of safinamide focus on its curative effect and pharmacological effect, while its side effect of embryonic development is barely studied. In this study, we used zebrafish as a model to evaluate the embryonic developmental toxicity of safinamide. Our results revealed that higher concentrations (30 μM) of safinamide treatment caused a decrease in hatching rate and an increase in malformation and mortality in zebrafish larvae. Meanwhile, we observed that lower safinamide exposure (10 μM) increased the body length of zebrafish larvae and resulted in hyperactivity-like behaviors. In addition, an increased trend in dopamine (DA) level was found in 3.3 μM and 10 μM safinamide-exposed groups. Transcriptome analysis identified that safinamide exposure may disturb a variety of physiological processes such as neuroactive ligand-receptor interaction signaling pathway. In summary, our study reveals that safinamide may cause developmental defects in zebrafish larvae and provides insights into its toxic reactions in early develoment.
Collapse
Affiliation(s)
- Zhengkang Su
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China
| | - Fengqing Qin
- Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf
| | - Hai Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China
| | - Kaiyu Guan
- Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China
| | - Ziru Dai
- Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf
| | - Weihong Song
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
da Cruz Guedes E, Erustes AG, Leão AHFF, Carneiro CA, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Smaili SS, Reckziegel P, Pereira GJS. Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-synuclein in Caenorhabditis elegans. Neurochem Res 2023:10.1007/s11064-023-03905-z. [PMID: 36964823 DOI: 10.1007/s11064-023-03905-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases. Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine. Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms. Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.
Collapse
Affiliation(s)
- Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - César Alves Carneiro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Patrícia Reckziegel
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
9
|
Su Z, Guan K, Liu Y, Zhang H, Huang Z, Zheng M, Zhu Y, Zhang H, Song W, Li X. Developmental and behavioral toxicity assessment of opicapone in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114340. [PMID: 36508804 DOI: 10.1016/j.ecoenv.2022.114340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The use of clinical psychoactive drugs often poses unpredictable threats to fetal development. Catechol-O-methyltransferase (COMT) is a key enzyme that regulates dopamine metabolism and a promising target for modulation of cognitive functions. Opicapone, a newly effective third-generation peripheral COMT inhibitor, is used for the treatment of Parkinson's disease (PD) and possibly to improve other dopamine-related disorders such as alcohol use disorder (AUD) and obsessive-compulsive disorder (OCD). The widespread use of opicapone will inevitably lead to biological exposure and damage to the human body, such as affecting fetal development. However, the effect of opicapone on embryonic development remains unknown. Here, zebrafish larvae were used as an animal model and demonstrated that a high concentration (30 μM) of opicapone exposure was teratogenic and lethal, while a low concentration also caused developmental delay such as a shortened body size, a smaller head, and reduced locomotor behaviors in zebrafish larvae. Meanwhile, opicapone treatment specifically increased the level of dopamine (DA) in zebrafish larvae. The depletion response of the total glutathione level (including oxidized and reduced forms of glutathione) and changed antioxidant enzymes activities in zebrafish larvae suggest oxidative damage caused by opicapone. In addition, enhanced glutathione metabolism and cytokine-cytokine receptor interaction were found in zebrafish larvae treated with opicapone, indicating that opicapone treatment caused an oxidation process and immune responses. Our results provide a new insight into the significant developmental toxicity of opicapone in zebrafish larvae.
Collapse
Affiliation(s)
- Zhengkang Su
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Kaiyu Guan
- Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China
| | - Yunbin Liu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430010, PR China
| | - Hai Zhang
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Zhengwei Huang
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Miaomiao Zheng
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Ya Zhu
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - He Zhang
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Weihong Song
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| | - Xi Li
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
10
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
11
|
Liu M, Zheng M, Zhang W, Yang F, Hong L, Yu X, Xu H. Cuprizone-induced dopaminergic hyperactivity and locomotor deficit in zebrafish larvae. Brain Res 2022; 1780:147802. [PMID: 35085574 DOI: 10.1016/j.brainres.2022.147802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
|
12
|
Liu J, Shang Y, Xiao J, Fan H, Jiang M, Fan S, Bai G. Phenotype-Based HPLC-Q-TOF-MS/MS Coupled With Zebrafish Behavior Trajectory Analysis System for the Identification of the Antidepressant Components in Methanol Extract of Anshen Buxin Six Pills. Front Pharmacol 2021; 12:764388. [PMID: 34880758 PMCID: PMC8645982 DOI: 10.3389/fphar.2021.764388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Phenotype screening has become an important tool for the discovery of active components in traditional Chinese medicine. Anshen Buxin Six Pills (ASBX) are a traditional Mongolian medicine used for the treatment of neurosis in clinical settings. However, its antidepressant components have not been explicitly identified and studied. Here, the antidepressant effect of ASBX was evaluated in adult zebrafish. High performance liquid chromatography-mass spectrometry (HPLC-Q-TOF-MS/MS) was combined with zebrafish behavior trajectory analysis to screen and identify the antidepressant-active extract fraction and active components of ASBX. Finally, the antidepressant effect of the active ingredients were verified by the behavior, pathology, biochemical indices and protein level of adult fish. The novel tank driving test (NTDT) showed that ASBX can effectively improve the depressive effect of reserpine on zebrafish. Petroleum ether and dichloromethane extracts of ASBX were screened as antidepressant active extracts. Costunolide (COS) and dehydrocostus lactone (DHE) were screened as the active components of ASBX. COS had been shown to significantly improve the depressive behavior, nerve injury and neurotransmitter levels (5-hydroxytryptamine (5-HT) and norepinephrine (NE)) of zebrafish by inhibiting the high expression of serotonin transporter and norepinephrine transporter induced by reserpine suggesting the antidepressant effect of COS may be related to its effect on 5-HT and NE pathways. This study provided a phenotype based screening method for antidepressant components of traditional Chinese medicines, so as to realize the separation, identification and activity screening of components at the same time.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juanlan Xiao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huirong Fan
- The Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Niu X, Xu S, Yang Q, Xu X, Zheng M, Li X, Guan W. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior. HARMFUL ALGAE 2021; 103:101996. [PMID: 33980436 DOI: 10.1016/j.hal.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Karenia mikimotoi is a toxic dinoflagellate that forms harmful blooms in coastal waters, threatening aquaculture worldwide. However, we do not know whether K. mikimotoi has a neurotoxic effect on aquatic animal behavior. Thus, this study investigated potential K. mikimotoi neurotoxicity in zebrafish larvae. Cells of K. mikimotoi were collected at the mid-exponential phase from a batch culture to prepare ruptured cell solutions (RCS). At 6 h post-fertilization (hpf), zebrafish embryos were exposed to different RCS concentrations (0, 102, 103, 104, and 2.5 × 104 cells mL-1). After 120 hpf, treated larvae were collected to analyze locomotor behavior; activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT); and expression of genes related to neurodevelopment. We found that RCS did not affect survival rate, but significantly decreased larval locomotion, as well as their AChE, SOD, and CAT activity. Additionally, the examination of the day-night behavioral experiment revealed RCS decreased locomotion only at night. Zebrafish larvae were also significantly hypoactive in response to light and sound stimulations. Of the neurodevelopment genes, three (th, neurog1, and neurod1) were downregulated, while two (bdnf and manf) were upregulated. Our study suggests that K. mikimotoi neurotoxicity occurs through causing oxidative damage, as well as disorders in the cholinergic system and nervous system development. The results provide new insight that K. mikimotoi in low abundance did not cause significant lethal effect but still exhibited significant neurotoxicity on aquatic animals.
Collapse
Affiliation(s)
- Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Shengnan Xu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
16
|
Luo X, Chen L, Zhang Y, Liu J, Xie H. Developmental and cardiac toxicities of propofol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108838. [PMID: 32585369 DOI: 10.1016/j.cbpc.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022]
Abstract
Propofol, a commonly used anesthetic, is convenient to use, induces quick effect, enables rapid recovery, and is widely accessible given its stable supply. However, its adverse effects are a concern. Reportedly, propofol exhibits a significant inhibitory effect on the respiratory and circulatory systems. Furthermore, intravenous administration of this drug results in hypotension, rapid heart rate, and respiratory failure. Because many pregnant women are administered propofol during childbirth, it may have a significant negative effect on the development of infants. Propofol can cause considerable developmental neurotoxicity and has known activity on the heart. However, the underling mechanisms of these toxicities remain unclear. In the present study, zebrafish embryos were exposed to propofol at different concentrations (0.05, 0.1, 0.5, 1, 5, 10, and 20 μg/ml) to determine its developmental and cardiac toxicities. Propofol exposure decreased the survival rate and hatchability of zebrafish embryos. Additionally, the embryo malformation rate increased in a concentration-dependent manner. Different types of malformations were observed following propofol administration. The proportion of pericardial cysts increased, whereas the heart rate and size decreased with an increase in propofol concentration. The quantitative reverse-transcription polymerase chain reaction revealed that propofol significantly altered the expression of genes related to cardiac development and functions in zebrafish. Collectively, our findings indicate that propofol exposure induces significant developmental and cardiac toxicities in zebrafish.
Collapse
Affiliation(s)
- Xiaopan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China; Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Long Chen
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yunlong Zhang
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jintao Liu
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| |
Collapse
|
17
|
Rhee J, Han E, Nam KJ, Lim KH, Chan Rah Y, Park S, Koun S, Park HC, Choi J. Assessment of hair cell damage and developmental toxicity after fine particulate matter 2.5 μm (PM 2.5) exposure using zebrafish (Danio rerio) models. Int J Pediatr Otorhinolaryngol 2019; 126:109611. [PMID: 31374386 DOI: 10.1016/j.ijporl.2019.109611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Particulate matter (PM) exposure has become one of the most serious problems. The aim of the present study was to evaluate the hair cell damage and possible developmental toxicity caused by PM2.5 exposure using a zebrafish model. METHODS Zebrafish embryos were exposed to various concentrations of PM2.5. Developmental toxicity was evaluated based on general morphology score (GMS) system and Panzica-Kelly score, and by measurement of body length and heart rate. To evaluate hair cell damage, the average number of total hair cells within four neuromasts exposed to various concentrations of PM2.5 was compared with that of the control group. RESULTS Morphological abnormalities evaluated by the GMS system and Panzica-Kelly score were rare and body length tended to be shorter in the PM2.5-exposed groups. Heart rate decreased significantly in the PM2.5-exposed group. Additionally, significant hair cell damage was observed after PM2.5 exposure. It was dose-dependent and more severe after a longer period exposure (10 dpf). CONCLUSIONS In zebrafish embryos, exposure of PM2.5 in the early stages of life decreased heart rate and caused significant hair cell damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Jihye Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kuk Jin Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea.
| |
Collapse
|