1
|
Suleiman SB, Esa Y, Aziz D, Ani Azaman SN, Hassan NH, Syukri F. Exploring the detrimental effects of microplastics on Asian seabass (Lates calcarifer) fingerlings survival and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125103. [PMID: 39401561 DOI: 10.1016/j.envpol.2024.125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Microplastics (MPs) are widely used and disposed of indiscriminately, posing a potential threat to aquatic life. Herein, Asian seabass (Lates calcarifer) fingerlings were exposed to various concentrations (1, 10 and 100 ppt or g/kg) of dietary polyethylene MPs for 16 days. The results indicated a significant increase in mortality among the fish fed with dietary MPs compared to the control. Furthermore, histological analysis of the liver revealed moderate-to-severe morphological alterations, hepatocyte necrosis and vacuolisation as the concentration gradient of MPs increased. The severity of the alterations was highest at a concentration of 100 ppt, indicating a direct correlation between MP and liver damage. In addition, RNA sequencing and Gene Ontology term enrichment analysis revealed that a total of 4137 genes were significantly differentially expressed, with 1958 upregulated and 2179 downregulated genes. The significantly enriched terms included 'oxidoreductase activity', 'endocytosis', 'mitochondrial', 'immune system process' and 'lipid catabolic process'. Moreover, the Kyoto Encyclopaedia of Genes and Genomes enrichment analysis demonstrated that dietary MPs triggered oxidative stress, immune response and adaptive mechanism pathways in fish. Thus, MPs can induce metabolic disorders in L. calcarifer, highlighting their potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Saadu Bala Suleiman
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Fisheries, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria
| | - Yuzine Esa
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Dania Aziz
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Ani Azaman
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nadiatul Hafiza Hassan
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fadhil Syukri
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Tawfik MM, Betancor MB, McMillan S, Norambuena F, Tocher DR, Douglas A, Martin SAM. Modulation of metabolic and immunoregulatory pathways in the gut transcriptome of Atlantic salmon ( Salmo salar L.) after early nutritional programming during first feeding with plant-based diet. Front Immunol 2024; 15:1412821. [PMID: 39015564 PMCID: PMC11249740 DOI: 10.3389/fimmu.2024.1412821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Stuart McMillan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | | | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
3
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
4
|
Zheng PH, Lu YP, Zhang XX, Luan KE, Zhang ZL, Li JJ, Xu T, Li JT, Xian JA, Guo H, Wang AL. New insights into the regulation mechanism of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas under 4-nonylphenol exposure using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109050. [PMID: 37666313 DOI: 10.1016/j.fsi.2023.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.
Collapse
Affiliation(s)
- Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Ke-Er Luan
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Tong Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China.
| | - Hui Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China.
| | - An-Li Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
5
|
A Window of Vulnerability: Chronic Environmental Stress Does Not Impair Reproduction in the Swordfish Xiphias gladius. Animals (Basel) 2023; 13:ani13020269. [PMID: 36670809 PMCID: PMC9854923 DOI: 10.3390/ani13020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Xiphias gladius is an important fishing resource. The Mediterranean stock is affected by overfishing and is declining. In this light, the aim of this study was to evaluate the cross-talk among metabolism, stress response, immune system and reproduction in immature and mature females, coupling histological and transcriptomic approaches. The transcriptome of livers from 3 immature and 3 mature females was analyzed using the Artificial Intelligence RNA-Seq. For the histological analysis, ovary and liver samples were collected from 50 specimens caught during the reproductive season in the Mediterranean Sea. A total of 750 genes were differentially expressed between the livers. The gene ontologtabey analysis showed 91 upregulated and 161 downregulated biological process GO terms. Instead, the KEGG enrichment analysis revealed 15 enriched pathways. Furthermore, the binding occurring between estrogen receptors and aryl hydrocarbon receptor nuclear translocator, upregulated in mature females, could be liable for the inhibition of detoxification pathway. Indeed, at the histological level, mature females showed a higher density and number of melanomacrophage centers, biomarkers of stress. The present findings reveal the cross-talk among response to environmental stressors, metabolism and reproduction, highlighting that mature females invest a lot of energy in reproduction instead of immune response and detoxification.
Collapse
|
6
|
Bastolla CLV, Saldaña-Serrano M, Lima D, Mattos JJ, Gomes CHAM, Cella H, Righetti BPH, Ferreira CP, Zacchi FL, Bícego MC, Taniguchi S, Bainy ACD. Molecular changes in oysters Crassostrea gigas (Thunberg, 1793) from aquaculture areas of Santa Catarina Island bays (Florianópolis, Brazil) reveal anthropogenic effects. CHEMOSPHERE 2022; 307:135735. [PMID: 35868530 DOI: 10.1016/j.chemosphere.2022.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Herculano Cella
- Laboratory of Algae Cultivation, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Ye C, Xiong W, Shi S, Shi J, Yang W, Zhang X. Biomarker Responses, Gene Expression Alterations, and Histological Changes in Zebrafish (Danio rerio) After In Vivo Exposure to Polychlorinated Diphenyl Ethers. Front Physiol 2022; 13:907906. [PMID: 35721562 PMCID: PMC9203962 DOI: 10.3389/fphys.2022.907906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated diphenyl ethers (PCDEs) have been detected in various aquatic matrices, which pose potential threats to aquatic ecosystem security. In this work, both micro and macro analysis methods were used to assess the toxicity of PCDEs to zebrafish. Results indicated that after in vivo PCDE exposure, the oxidative stress and related gene of Danio rerio were significantly changed. The higher concentration or longer exposure time could cause more severe oxidative stress in zebrafish tissues. Compared with among the five tested compounds, more obvious changes in the level of oxidative biomarkers of lower chlorinated PCDEs’ (4-mono-CDE and 4,4′-di-CDE) exposure groups were observed. The integrated biomarker response analysis and gene expression results also indicate a similar trend. Histopathological observation suggested that 4,4′-di-CDE could render liver nuclei enlargement and necrosis, hepatocyte vacuolation, and the development inhibition of ovarian cells. Transmission electron microscope photos showed that 4,4′-di-CDE caused organelle damage in the liver and ovary, including the rupture of the endoplasmic reticulum, swelling of mitochondria, and condensation of chromatin in the liver and mitochondria disappeared significantly in the ovary. The degree of damage is enhanced with the increasing exposure doses. In addition, PCDEs also significantly altered vitellogenin content and related gene (vtg1) expression, suggesting that PCDEs may be estrogen endocrine disruptors. Overall, these results provided some valuable toxicological data of PCDEs on aquatic species.
Collapse
Affiliation(s)
- Chunmeng Ye
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, China
| | - Wenli Xiong
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, China
| | - Shuaishuai Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Ecology and Environment, Nanjing, China
- *Correspondence: Jiaqi Shi, ; Xuesheng Zhang,
| | - Wenhui Yang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, China
- *Correspondence: Jiaqi Shi, ; Xuesheng Zhang,
| |
Collapse
|
8
|
Yang Z, Fang Y, Liu J, Chen A, Cheng Y, Wang Y. Moderate acidification mitigates the toxic effects of phenanthrene on the mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 294:133783. [PMID: 35101431 DOI: 10.1016/j.chemosphere.2022.133783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Freshwater acidification and phenanthrene may result in complex adverse effects on aquatic animals. Juvenile Chinese mitten crabs (Eriocheir sinensis) were exposed to different pH levels (7.8, 6.5, and 5.5) under phenanthrene (PHE) (0 (control) and 50 μg/L) conditions for 14 days. Antioxidant and transcriptomic responses were determined under stress conditions to evaluate the physiological adaptation of crabs. Under the control pH 7.8, PHE led to significantly reduced activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST), but increased glutathione peroxidase (GSH-Px), 7-ethoxyresorufin-o-deethylase (EROD) activities, and malondialdehyde (MDA) levels. However, moderate acidification (pH 6.5) changed PHE effects by increasing antioxidant enzymes. Acidification generally reduced SOD, GPx, GST and EROD activities, but increased CAT, GR, MDA. Compared with pH7.8 group, pH7.8 × PHE and pH6.5 × PHE groups had 1148 and 1498 differentially expressed genes, respectively, with "Biological process" being the main category in the two experimental groups. pH7.8 × PHE treatment caused significant enrichment of disease and immune-related pathways, while under pH6.5 × PHE, more pathways related to metabolism, detoxification, environmental information processing, and energy supply were significantly enriched. Thus, PHE had a significant inhibitory effect on antioxidant performance in crabs, while moderate acidification (pH6.5) mitigated the toxic effects of PHE. Overall, moderate acidification has a positive effect on the defense against the negative effects of PHE in Chinese mitten crabs, and this study provides insights into the defense mechanism of crustaceans in response to combined stress of acidification and PHE.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yucheng Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiani Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Kang X, Li D, Zhao X, Lv Y, Chen X, Song X, Liu X, Chen C, Cao X. Long-Term Exposure to Phenanthrene Induced Gene Expressions and Enzyme Activities of Cyprinus carpio below the Safe Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042129. [PMID: 35206316 PMCID: PMC8872569 DOI: 10.3390/ijerph19042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Phenanthrene (PHE) is a typical compound biomagnified in the food chain which endangers human health and generally accumulates from marine life. It has been listed as one of the 16 priority PAHs evaluated in toxicology. In order to evaluate the changes of CYP1A GST mRNA expression and EROD GST enzyme activity in carp exposed to lower than safe concentrations of PHE. Long-term exposure of carp to PHE at lower than safe concentrations for up to 25 days. The mRNA expression level and cytochrome P450 (CYP1A/EROD (7-Ethoxylesorufin O-deethylase)) and glutathione S-transferase (GST) activity were measured in carp liver and brain tissue. The results showed that PHE stress induced low-concentration induction and high-concentration inhibition of CYP1A expression and EROD enzyme activity in the liver and brain of carp. In both two organs, GST enzyme activity was also induced. However, the expression of GST mRNA was first induced and then inhibited, after the 15th day. These results indicate that long-term exposure to PHE at lower than safe concentrations still poses a potential threat to carp’s oxidase system and gene expression.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Yanfeng Lv
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiangyu Liu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
- Correspondence: ; Tel.: +86-21-6779-2550
| |
Collapse
|
10
|
Wu L, Zhong L, Ru H, Yao F, Ni Z, Li Y. Thyroid disruption and growth inhibition of zebrafish embryos/larvae by phenanthrene treatment at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106053. [PMID: 34933138 DOI: 10.1016/j.aquatox.2021.106053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phenanthrene induces reproductive and developmental toxicity in fish, but whether it can disrupt the thyroid hormone balance and inhibit growth had not been determined to date. In this study, zebrafish embryos were exposed to phenanthrene (0, 0.1, 1, 10 and 100 μg/L) for 7 days. The results of this experiment demonstrated that phenanthrene induced thyroid disruption and growth inhibition in zebrafish larvae. Phenanthrene significantly decreased the concentration of l-thyroxine (T4) but increased that of 3,5,3'-l-triiodothyronine (T3). The expression of genes related to the hypothalamic-pituitary-thyroid (HPT) axis was altered in zebrafish larvae exposed to phenanthrene. Moreover, phenanthrene exposure significantly increased the malformation rate and significantly reduced the survival rate and the body length of zebrafish larvae. Furthermore, phenanthrene significantly decreased the concentrations of growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Changes observed in gene expression patterns further support the hypothesis that these effects may be related to alterations along the GH/IGF-1 axis. In conclusion, our study indicated that exposure to phenanthrene at concentrations as low as 0.1 μg/L resulted in thyroid disruption and growth inhibition in zebrafish larvae. Therefore, the estimation of phenanthrene levels in the aquatic environment needs to be revisited.
Collapse
Affiliation(s)
- Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
11
|
Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chem Biol Interact 2022; 351:109762. [PMID: 34843692 DOI: 10.1016/j.cbi.2021.109762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Nonylphenol (NP), an environmentally persistent and toxic endocrine-disrupting chemical with estrogenic properties, has severe implications on humans and wildlife. Accumulating evidence demonstrates the toxic response of NP on the developmental process, nervous system, and reproductive parameters. Although NP exposure has been implicated in chronic liver injury, the underlying events associated with hepatic pathophysiology remain less investigated. Using male zebrafish (Danio rerio) as the model, the present study investigates the impact of environmentally relevant concentrations of NP (50 and 100 μg/L, 21 days) on hepatic redox homeostasis vis-à-vis cellular energy sensors, inflammatory response, and cell death involving a mechanistic insight into estrogen receptor (ER) modulation. Our results demonstrate that congruent with significant alteration in transcript abundance of antioxidant enzymes (SOD1, SOD2, Catalase, GPx1a, GSTα1), chronic exposure to NP promotes ROS synthesis, more specifically superoxide anions and H2O2 levels, and lipid peroxidation potentially through elevated NOX4 expression. Importantly, NP perturbation of markers associated with fatty acid biosynthesis (srebf1/fasn) and cellular energy-sensing network (sirt1/ampkα/pgc1α) indicates dysregulated energy homeostasis, metabolic disruption, and macrovesicular steatosis, albeit with differential sensitivity at the dose level tested. Besides, elevated p38-MAPK phosphorylation (activation) together with loss of ER homeostasis at both mRNA (esr1, esr2a, esr2b) and protein (ERα, ERβ) levels suggest that NP modulation of ER abundance may have a significant influence on hepatic events. Elevated expression of inflammatory markers (TLR4, p-NF-κB, TNF-α, IL-6, IL-1β, and NOS2) and pro-apoptotic and necrotic regulators, e.g., Bax, caspase- 8, -9 and cleaved PARP1 (50 kDa), indicate chronic inflammation and hepatotoxicity in NP-exposed males. Collectively, elevated oxidative stress, metabolic dysregulation and immune modulation may lead to chronic liver injury in organisms exposed to metabolic disrupting chemicals.
Collapse
|
12
|
Woo SJ. Effects of benzo[a]pyrene exposure on black rockfish (Sebastes schlegelii): EROD activity, CYP1A protein, and immunohistochemical and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4033-4043. [PMID: 34402013 DOI: 10.1007/s11356-021-15949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 1A (CYP1A) is the major phase I of metabolic enzyme that plays essential roles in the detoxification of drugs and biotransformation of environmental pollutants. This study investigated CYP1A enzyme induction using EROD activity, CYP1A protein levels, and immunohistochemistry, along with histopathology of the liver, gills, kidneys, and intestine from the black rockfish, Sebastes schlegelii, exposed to benzo[a]pyrene (B[a]P). S. schlegelii has high risks of ingestion of sediment and absorption of heavy crude oil after accidental oil spills in Korea. This study thus exposed fish to B[a]P at 2, 20, and 200 μg/g body weight. EROD activity and CYP1A protein levels in hepatic microsomes had a positive correlation with the concentration of B[a]P (2-200 μg/g); in particular, exposure to 200 μg/g of B[a]P resulted in a 4- and 6-fold increase in hepatic EROD activity and CYP1A protein level, respectively. Hyperplasia of primary lamellar epithelium and atrophy of renal tubules were observed in the gills and kidney, respectively, following exposure to B[a]P at 200 μg/g. In contrast, severe histological alteration was not seen in intestinal tissues. Immunohistochemical analysis of the distribution of cellular CYP1A in four tissues showed strong immunostaining in the cytoplasm and nuclear membranes of the liver against B[a]P at 200 μg/g. Polycyclic aromatic hydrocarbons (PAHs), such as B[a]P, cause adverse histological changes in tissues of fish and provide evidence that PAH metabolism is inducible in fish liver, leading to increased CYP1A induction. Furthermore, the CYP1A induction in specific tissues might assist in monitoring and field assessment of marine ecosystems.
Collapse
Affiliation(s)
- Soo Ji Woo
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Korea.
- Pathology Research Division, National Institute of Fisheries Science, 46083, Busan, Korea.
| |
Collapse
|
13
|
Wallace SJ, de Solla SR, Head JA, Hodson PV, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS. Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114863. [PMID: 32599329 DOI: 10.1016/j.envpol.2020.114863] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous in the environment. Wildlife (including fish) are chronically exposed to PACs through air, water, sediment, soil, and/or dietary routes. Exposures are highest near industrial or urban sites, such as aluminum smelters and oil sands mines, or near natural sources such as forest fires. This review assesses the exposure and toxicity of PACs to wildlife, with a focus on the Canadian environment. Most published field studies measured PAC concentrations in tissues of invertebrates, fish, and birds, with fewer studies of amphibians and mammals. In general, PAC concentrations measured in Canadian wildlife tissues were under the benzo[a]pyrene (BaP) guideline for human consumption. Health effects of PAC exposure include embryotoxicity, deformities, cardiotoxicity, DNA damage, changes to DNA methylation, oxidative stress, endocrine disruption, and impaired reproduction. Much of the toxicity of PACs can be attributed to their bioavailability, and the extent to which certain PACs are transformed into more toxic metabolites by cytochrome P450 enzymes. As most mechanistic studies are limited to individual polycyclic aromatic hydrocarbons (PAHs), particularly BaP, research on other PACs and PAC-containing complex mixtures is required to understand the environmental significance of PAC exposure and toxicity. Additional work on responses to PACs in amphibians, reptiles, and semi-aquatic mammals, and development of molecular markers for early detection of biological responses to PACs would provide a stronger biological and ecological justification for regulating PAC emissions to protect Canadian wildlife.
Collapse
Affiliation(s)
- S J Wallace
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - J A Head
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - J L Parrott
- Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - A Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - V S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|