1
|
Cao X, Ye X, Sattar A. Transcriptomic and coexpression network analyses revealed the regulatory mechanism of Cydia pomonella infestation on the synthesis of phytohormones in walnut husks. PeerJ 2024; 12:e18130. [PMID: 39329139 PMCID: PMC11426320 DOI: 10.7717/peerj.18130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The codling moth (Cydia pomonella) has a major effect on the quality and yield of walnut fruit. Plant defences respond to insect infestation by activating hormonal signalling and the flavonoid biosynthetic pathway. However, little is known about the role of walnut husk hormones and flavonoid biosynthesis in response to C. pomonella infestation. The phytohormone content assay revealed that the contents of salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-ILE), jasmonic acid-valine (JA-Val) and methyl jasmonate (MeJA) increased after feeding at different time points (0, 12, 24, 36, 48, and 72 h) of walnut husk. RNA-seq analysis of walnut husks following C. pomonella feeding revealed a temporal pattern in differentially expressed genes (DEGs), with the number increasing from 3,988 at 12 h to 5,929 at 72 h postfeeding compared with the control at 0 h postfeeding. Walnut husks exhibited significant upregulation of genes involved in various defence pathways, including flavonoid biosynthesis (PAL, CYP73A, 4CL, CHS, CHI, F3H, ANS, and LAR), SA (PAL), ABA (ZEP and ABA2), and JA (AOS, AOC, OPR, JAZ, and MYC2) pathways. Three gene coexpression networks that had a significant positive association with these hormonal changes were constructed based on the basis of weighted gene coexpression network analysis (WGCNA). We identified several hub transcription factors, including the turquoise module (AIL6, MYB4, PRE6, WRKY71, WRKY31, ERF003, and WRKY75), the green module (bHLH79, PCL1, APRR5, ABI5, and ILR3), and the magenta module (ERF27, bHLH35, bHLH18, TIFY5A, WRKY31, and MYB44). Taken together, these findings provide useful genetic resources for exploring the defence response mediated by phytohormones in walnut husks.
Collapse
Affiliation(s)
- Xiaoyan Cao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xiaoqin Ye
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| | - Adil Sattar
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
2
|
Pastierovič F, Kalyniukova A, Hradecký J, Dvořák O, Vítámvás J, Mogilicherla K, Tomášková I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2024; 13:1243. [PMID: 38732458 PMCID: PMC11085190 DOI: 10.3390/plants13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and b, and volatile compounds, were determined between leaves damaged by sucking insects (aphid-Chaitophorus nassonowi) and chewing insects (spongy moth-Lymantria dispar) compared to uninfected leaves. Among the nine analyzed phenolic compounds, only catechin and procyanidin showed significant differences between the control leaves and leaves affected by spongy moths or aphids. GC-TOF-MS volatile metabolome analysis showed the clear separation of the control versus aphids-infested and moth-infested leaves. In total, the compounds that proved to have the highest explanatory power for aphid-infested leaves were 3-hexenal and 5-methyl-2-furanone, and for moth-infested leaves, trans-α-farnesene and 4-cyanocyclohexane. The aphid-infested leaves contained around half the amount of chlorophylls and twice the amount of proline compared to uninfected leaves, and these results evidenced that aphids influence plant physiology more than chewing insects.
Collapse
Affiliation(s)
- Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Ondřej Dvořák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jan Vítámvás
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| |
Collapse
|
3
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Deng Z, Zhang Y, Fang L, Zhang M, Wang L, Ni X, Li X. Identification of the Flavone-Inducible Counter-Defense Genes and Their cis-Elements in Helicoverpa armigera. Toxins (Basel) 2023; 15:365. [PMID: 37368666 DOI: 10.3390/toxins15060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Flavone is widely found in plants and plays an important role in plant defense against pests. Many pests, such as Helicoverpa armigera, use flavone as a cue to upregulate counter-defense genes for detoxification of flavone. Yet the spectrum of the flavone-inducible genes and their linked cis-regulatory elements remains unclear. In this study, 48 differentially expressed genes (DEGs) were found by RNA-seq. These DEGs were mainly concentrated in the retinol metabolism and drug metabolism-cytochrome P450 pathways. Further in silico analysis of the promoter regions of 24 upregulated genes predicted two motifs through MEME and five previously characterized cis-elements including CRE, TRE, EcRE, XRE-AhR and ARE. Functional analysis of the two predicted motifs and two different versions of ARE (named ARE1 and ARE2) in the promoter region of the flavone-inducible carboxylesterase gene CCE001j verified that the two motifs and ARE2 are not responsible for flavone induction of H. armigera counter-defense genes, whereas ARE1 is a new xenobiotic response element to flavone (XRE-Fla) and plays a decisive role in flavone induction of CCE001j. This study is of great significance for further understanding the antagonistic interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Fang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lixiang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Chen L, Song J, Wang J, Ye M, Deng Q, Wu X, Wu X, Ren B. Effects of Methyl Jasmonate Fumigation on the Growth and Detoxification Ability of Spodoptera litura to Xanthotoxin. INSECTS 2023; 14:145. [PMID: 36835714 PMCID: PMC9966746 DOI: 10.3390/insects14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) is a volatile substance derived from jasmonic acid (JA), and it responds to interbiotic and abiotic stresses by participating in interplant communication. Despite its function in interplant communication, the specific role of MeJA in insect defense responses is poorly understood. In this study, we found that carboxylesterase (CarE) activities, glutathione-S-transferase (GSTs) activities, and cytochrome mono-oxygenases (P450s) content increased more after the feeding of diets containing xanthotoxin, while larvae exposed to MeJA fumigation also showed higher enzyme activity in a dose-dependent manner: lower and medium concentrations of MeJA induced higher detoxification enzyme activities than higher concentrations of MeJA. Moreover, MeJA improved the growth of larvae fed on the control diet without toxins and diets with lower concentrations of xanthotoxin (0.05%); however, MeJA could not protect the larvae against higher concentrations of xanthotoxin (0.1%, 0.2%). In summary, we demonstrated that MeJA is effective at inducing S. litura defense response, but the enhanced detoxifying ability could not overcome the strong toxins.
Collapse
Affiliation(s)
- Lina Chen
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Jia Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jun Wang
- Guiyang Plant Protection and Quarantine Station, Guiyang 550081, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Qianqian Deng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaobao Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaoyi Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Bing Ren
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| |
Collapse
|
6
|
Du E, Chen Y, Li Y, Zhang F, Sun Z, Hao R, Gui F. Effect of arbuscular mycorrhizal fungi on the responses of Ageratina adenophora to Aphis gossypii herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:1015947. [PMID: 36325539 PMCID: PMC9618805 DOI: 10.3389/fpls.2022.1015947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The invasive weed Ageratina adenophora can form a positive symbiotic relationship with native arbuscular mycorrhizal fungi (AMF) to promote its invasion ability. However, the function of AMF during the feeding of Aphis gossypii in A. adenophora was poorly understand. This study aimed to investigate the effects of two dominant AMF (Claroideoglomus etunicatum and Septoglomus constrictum) on A. adenophora in response to the feeding of the generalist herbivore A. gossypii. The results showed that A. gossypii infestation could significantly reduce the biomass, nutrient and proline contents of A. adenophora, and increase the antioxidant enzyme activities, defense hormone and secondary metabolite contents of the weed. Compared with the A. gossypii infested A. adenophora, inoculation C. etunicatum and S. constrictum could significantly promote the growth ability and enhanced the resistance of A. adenophora to A. gossypii infestation, and the aboveground biomass of A. adenophora increased by 317.21% and 114.73%, the root biomass increased by 347.33% and 120.58%, the polyphenol oxidase activity heightened by 57.85% and 12.62%, the jasmonic acid content raised by 13.49% and 4.92%, the flavonoid content increased by 27.29% and 11.92%, respectively. The survival rate of A. gossypii and density of nymphs were significantly inhibited by AMF inoculation, and the effect of C. etunicatum was significantly greater than that of S. constrictum. This study provides clarified evidence that AMF in the rhizosphere of A. adenophora are effective in the development of tolerance and chemical defense under the feeding pressure of insect herbivory, and offer references for the management of the A. adenophora from the perspective of soil microorganisms.
Collapse
Affiliation(s)
- Ewei Du
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yaping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yahong Li
- Department of Plant Quarantine, Yunnan Plant Protection and Quarantine Station, Kunming, China
| | - Fengjuan Zhang
- College of Life Science, Hebei University, Baoding, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ruoshi Hao
- Department of Industrial Development, Yunnan Plateau Charateristic Agriculture Industry Research Institute, Kunming, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Antifeedant Mechanism of Dodonaea viscosa Saponin A Isolated from the Seeds of Dodonaea viscosa. Molecules 2022; 27:molecules27144464. [PMID: 35889337 PMCID: PMC9323312 DOI: 10.3390/molecules27144464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Dodonaea viscosa is a medicinal plant which has been used to treat various diseases in humans. However, the anti-insect activity of extracts from D. viscosa has not been evaluated. Here, we found that the total saponins from D. viscosa (TSDV) had strong antifeedant and growth inhibition activities against 4th-instar larvae of Spodoptera litura. The median antifeeding concentration (AFC50) value of TSDV on larvae was 1621.81 μg/mL. TSDV affected the detoxification enzyme system of the larvae and also exerted antifeedant activity possibly through targeting the γ-aminobutyric acid (GABA) system. The AFC50 concentration, the carboxylesterase activity, glutathione S-transferases activity, and cytochrome P450 content increased to 258%, 205%, and 215%, respectively, and likewise the glutamate decarboxylase activity and GABA content to 195% and 230%, respectively, in larvae which fed on TSDV. However, D. viscosa saponin A (DVSA) showed better antifeedant activity and growth inhibition activity in larvae, compared to TSDV. DVSA also exerted their antifeedant activity possibly through targeting the GABA system and subsequently affected the detoxification enzyme system. Further, DVSA directly affected the medial sensillum and the lateral sensillum of the 4th-instar larvae. Stimulation of Spodoptera litura. with DVSA elicited clear, consistent, and robust excitatory responses in a single taste cell.
Collapse
|
8
|
Zhang KX, Li HY, Quandahor P, Gou YP, Li CC, Zhang QY, Haq IU, Ma Y, Liu CZ. Responses of Six Wheat Cultivars (Triticum aestivum) to Wheat Aphid (Sitobion avenae) Infestation. INSECTS 2022; 13:insects13060508. [PMID: 35735845 PMCID: PMC9225215 DOI: 10.3390/insects13060508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Sitobion avenae Fabricius is an important wheat aphid species in China, causing significant losses to wheat production. Improving host-plant resistance is an effective and environmentally friendly method of aphid control. Sitobion avenae resistance and the total phenolic and flavonoid content accumulation of six wheat cultivars to S. avenae infestation were investigated to elucidate responses of six wheat varieties against S. avenae. Among the six tested wheat cultivars, Yongliang No.15 and Ganchun No.18 demonstrated high resistance to S. avenae. The correlation analysis revealed a positive relationship between total phenol and flavonoid content accumulation and developmental duration (DD), and a negative relationship between accumulation and weight gain (WG) and mean relative growth rate (MRGR). The correlation between flavonoid and biological parameters was statistically stronger than total phenol. Our findings could serve as a theoretical basis for further research into the resistance mechanism of wheat varieties to S. avenae. Abstract Resistant variety screening is widely recommended for the management of Sitobion avenae. The purpose of this study was to assess responses of six wheat varieties (lines) to S. avenae. The aphid quantity ratio (AQR) was used to assess S. avenae resistance. Pearson’s correlation coefficient was used to perform a correlation analysis between AQR, biological parameters, and the accumulation of total phenolic and flavonoid content. When compared to the other cultivars, the results showed that two cultivars, Yongliang No.15 and Ganchun No.18, had high resistance against S. avenae. The correlation analysis revealed a positive relationship between total phenol and flavonoid content accumulation and developmental duration (DD), and a negative relationship between accumulation and weight gain (WG) and mean relative growth rate (MRGR). The correlation between flavonoid and biological parameters was statistically stronger than the correlation between total phenol and biological parameters. This research provides critical cues for screening and improving aphid-resistant wheat varieties in the field and will aid in our understanding of the resistance mechanism of wheat varieties against S. avenae.
Collapse
Affiliation(s)
- Ke-Xin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Hong-Yan Li
- Wuwei Shiyanghe Forestry General Field, Wuwei 733000, China;
| | - Peter Quandahor
- CSIR-Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana;
| | - Yu-Ping Gou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Chun-Chun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Qiang-Yan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Yue Ma
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
| | - Chang-Zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (K.-X.Z.); (Y.-P.G.); (C.-C.L.); (Q.-Y.Z.); (I.U.H.); (Y.M.)
- Correspondence:
| |
Collapse
|
9
|
Faidah AN, Zhao H, Sun L, Cao C. Effects of elevated CO 2 treatment of Populus davidiana × P. bolleana on growth and detoxifying enzymes in gypsy moth, Lymantria dispar. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109079. [PMID: 34015537 DOI: 10.1016/j.cbpc.2021.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/25/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
To date, elevated CO2 concentrations in the environment caused by various human activities influence diverse areas of life, including the interactions between insects and plants. The Lymantria dispar is one of the most severely destructive pests, which further could inflict ecological and economical damage. In this experiment, one-year-old Populus davidiana × P. bolleana plants were grown in CO2-enhanced environments for one month at three different CO2 concentrations: 397 ppm (atmospheric CO2 concentration), 550 ppm and 750 ppm (two predicted elevated CO2 concentrations). The 3rd instar L. dispar larvae then fed on the treated poplar seedlings covered in a nylon bag. The L. dispar larvae fed on poplar seedling treated for 96 h showed the highest growth rate at all CO2 concentrations. Enzymatic activity of treated larvae showed the highest GST and P450 activity at 750 ppm CO2. The relative expressions of seven CYP and ten GST genes in L. dispar larvae were analyzed quantitatively using real-time RT-PCR, which the results were expressed variably. Compared to 397 ppm CO2, the expression of CYP4L23 was down-regulated, while the expressions of other CYP genes were up-regulated. Meanwhile, only GSTo1 gene showed down-regulated at 48 h and 96 h in 750 ppm CO2 treatment, while GST expression level for the other nine GST genes showed up-regulated at 48 h and 72 h. These results offer the insight into plant-insect interactions under global climate change and furthermore will provide essential information for strategic pest control based on biochemical and molecular levels changes in gypsy moths.
Collapse
Affiliation(s)
- Arina Nur Faidah
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongying Zhao
- Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin 150040, China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Ma J, Sun L, Zhao H, Wang Z, Zou L, Cao C. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104860. [PMID: 34119211 DOI: 10.1016/j.pestbp.2021.104860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The Asian gypsy moth, Lymantria dispar, as one of the most important forest pests in the world, can feed on more than 500 species of host plants, causing serious damage to the forests. Poplar is one of the favorite host plants of L. dispar. The present study aimed to explore the effects of poplar secondary metabolites on the growth and detoxification function of L. dispar larvae. We also aimed to study the expression of glutathione S-transferase (GST) genes in different developmental stages and in response to treatment with secondary metabolites. Six kinds of main secondary metabolites and three groups of characteristic mixed secondary metabolites were selected as follows: Caffeic acid, salicin, rutin, quercetin, catechol, flavone, mixture 1 (salicin and flavone), mixture 2 (salicin, caffeic acid and catechol), and mixture 3 (flavone, caffeic acid and catechol) according to the content changes of secondary metabolites in poplar. The thirteen GST genes were selected as candidate genes to study the expression of GST genes in different developmental stages and after treatment with secondary metabolites using quantitative real-time reverse transcription PCR. The LdGSTe4 and LdGSTo1 genes could be induced by secondary metabolites and were screened to explore their detoxification function against secondary metabolites using RNA interference technology. The results showed that salicin and rutin significantly induced the expression of LdGSTe4 and LdGSTo1. Under the stress of secondary metabolites, LdGSTe4 silencing affected the adaptability of L. dispar larvae to salicin and rutin. LdGSTe4 silencing resulted in a significant decrease in the body weight of L. dispar, but had little effect on the relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food, and approximate digestibility, as well as the survival rate and development time. These results provide a deeper understanding of the adaptive mechanism of L. dispar to host plants, form the foundation for the further research into the host resistance mechanism, and identify target genes for breeding resistant transgenic poplar.
Collapse
Affiliation(s)
- Jingyi Ma
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hongying Zhao
- Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin 150081, PR China
| | - Zhenyue Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Li Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|