1
|
Chakraborty D, Chukwuka AV, Podder S, Sharma P, Bhowmick S, Mistri TK, Saha NC. Effects of α-olefin sulfonate (AOS) on Tubifex tubifex: toxicodynamic-toxicokinetic inferences from the general unified threshold (GUTS) model, biomarker responses and molecular docking predictions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:905-920. [PMID: 39020070 DOI: 10.1007/s10646-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC50, 20% of the LC50, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.
Collapse
Affiliation(s)
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), National Environmental Standards and Regulations Enforcement Agency, Abuja, Nigeria.
| | - Sanjoy Podder
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India
| | - Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, Salt Lake City, West Bengal, India.
| |
Collapse
|
2
|
Ghosh S, Bhattacharya R, Pal S, Saha NC. Benzalkonium chloride induced acute toxicity and its multifaceted implications on growth, hematological metrics, biochemical profiles, and stress-responsive biomarkers in tilapia (Oreochromis mossambicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52147-52170. [PMID: 39141265 DOI: 10.1007/s11356-024-34595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the toxic effects of benzalkonium chloride (BAC) on Oreochromis mossambicus, a freshwater fish species. Probit analysis was used to determine the lethal concentration (LC50) of BAC for different exposure periods (24, 48, 72, and 96 h). The viability of fish exposed to BAC was assessed using the general threshold survival models (GUTS) and confirmed with relevant datasets to evaluate model accuracy. Experimental groups of fish were exposed to BAC concentrations equivalent to 10% and 20% of the 96-h LC50 for 45 days. The study revealed significant alterations in various parameters during sublethal BAC exposure. These effects included decreased specific growth rate (SGR), red blood cell count (RBC), hemoglobin (Hb) concentration, hematocrit (Ht) value, plasma protein, and albumin levels, as well as acetylcholinesterase (AChE) activities in both gills and liver. Additionally, an increase in gastrosomatic index (GSI), feed conversion ratio (FCR), plasma glucose and creatinine concentrations, alanine aminotransferase (ALT), aspartate aminotransferase (AST) enzymatic activities, catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were observed in the exposed fish's gills and liver. Furthermore, the study found that glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels initially increased and then decreased in both gills and liver after exposure to BAC. Correlation matrix analysis, multivariate multiple regression (MMR), canonical correspondence analysis (CCA), integrated biomarker response (IBR), and biomarker response index (BRI) were utilized to assess the impact of BAC on fish, highlighting significant effects on multiple biomarkers in O. mossambicus following surfactant exposure. Thus, the study provides valuable insights into the toxic effects of BAC on this fish species, emphasizing the importance of monitoring such pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shruti Ghosh
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Sarmila Pal
- Department of Zoology, Hooghly Mohsin College, Hooghly, Chinsurah, West Bengal, India
| | - Nimai Chandra Saha
- Undergraduate and Postgraduate Department of Zoology, Bidhannagar College (Govt.), Salt Lake, Kolkata, 700064, West Bengal, India.
| |
Collapse
|
3
|
Feng M, Xu Z, Yin D, Zhao Z, Zhou X, Song L. Toxic effects of sodium dodecyl sulfate on planarian Dugesia japonica. PeerJ 2023; 11:e15660. [PMID: 37456884 PMCID: PMC10340106 DOI: 10.7717/peerj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Collapse
Affiliation(s)
- Minmin Feng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhenbiao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dandan Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zelong Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
4
|
Garai P, Banerjee P, Sharma P, Chatterjee A, Bhattacharya R, Saha NC. Mechanistic insights to lactic and formic acid toxicity on benthic oligochaete worm Tubifex tubifex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87319-87333. [PMID: 35802337 DOI: 10.1007/s11356-022-21361-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Lactic and formic acid are two commonly found monocarboxylic organic acids. Lactic acid is discharged into the water bodies as acidic industrial effluent from the food, cosmetic, chemical, and pharmaceutical industries, whereas formic acid is discharged from various paper, leather tanning, and textile processing industries. The present study investigated the toxicity of both organic acids upon the benthic oligochaete worm Tubifex tubifex. The 96-h median lethal concentration (LC50) values for lactic and formic acid are determined as 143.81 mg/l and 57.99 mg/l respectively. The effects of two sublethal concentrations (10% and 30% of 96 h LC50) of these acids on differential expression of oxidative stress enzymes are investigated. The comparative analysis of acute toxicity demonstrates that formic acid exposure is more detrimental to T. tubifex than lactic acid. The in silico structural analysis predicts that formic acid can interact with cytochrome c oxidase of the electron transport system and thereby inhibits its functionality and induces reactive oxygen species production. Integrated biomarker response (IBR) analysis illustrates that overall oxidative stress of formic acid to T. tubifex is significantly higher than that of lactic acid, which supports the structural analysis. It is concluded from this study that toxicokinetic-toxicodynamic and species sensitivity distributions studies are helpful for ecological risk management of environmental toxicants.
Collapse
Affiliation(s)
- Pramita Garai
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Priyajit Banerjee
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Pramita Sharma
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Arnab Chatterjee
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Ritwick Bhattacharya
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
5
|
Arora J, Ranjan A, Chauhan A, Biswas R, Rajput VD, Sushkova S, Mandzhieva S, Minkina T, Jindal T. Surfactant Pollution, an Emerging Threat to Ecosystem: Approaches for Effective Bacterial Degradation. J Appl Microbiol 2022; 133:1229-1244. [PMID: 35598183 DOI: 10.1111/jam.15631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 12/08/2022]
Abstract
The use of surfactants in households and industries is inevitable and so is their discharge into the environment, especially into the water bodies as effluents. Being surface-active agents, their utilization is mostly seen in soaps, detergents, personal care products, emulsifiers, wetting agents, etc. Anionic surfactants are the most used class. These surfactants are responsible for the foam and froth in the water bodies and cause potential adverse effects to both biotic and abiotic components of the ecosystem. Surfactants are capable of penetrating the cell membrane and thus cause toxicity to living organisms. Accumulation of these compounds has been known to cause significant gill damage and loss of sight in fish. Alteration of physiological and biochemical parameters of water decreases the amount of dissolved oxygen and thus affecting the entire ecosystem. Microbes utilizing surfactants as substrates for energy form the basis of the biodegradation of these compounds. The main organisms for surfactant biodegradation, both in sewage and natural waters, are bacteria. Several Pseudomonas and Bacillus spp. have shown efficient degradation of anionic surfactants namely: sodium dodecyl sulphate (SDS), linear alkylbenzene sulphonate (LAS), sodium dodecylbenzenesulphonate (SDBS). Also, several microbial consortia constituting Alcaligenes spp., Citrobacter spp., etc. have shown efficacy in the degradation of surfactants. The biodegradation efficiency studies of these microbes/microbial consortia would be of immense help in formulating better solutions for the bioremediation of surfactants and help to reduce their potential environmental hazards.
Collapse
Affiliation(s)
- Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Qiu X, Liu L, Xu W, Chen C, Li M, Shi Y, Wu X, Chen K, Wang C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish ( Danio rerio) When Co-Exposed with Cetylpyridinium Chloride. Antioxidants (Basel) 2022; 11:945. [PMID: 35624808 PMCID: PMC9138101 DOI: 10.3390/antiox11050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The combined application of nanoparticles and surfactants has attracted tremendous attention in basic research and industry. However, knowledge of their combined toxicity remains scarce. In this study, we exposed zebrafish embryos to cetylpyridinium chloride (CPC, a cationic surfactant, at 0 and 20 μg/L), zeolitic imidazolate framework nanoparticles (ZIF-NPs, at 0, 30, and 60 mg/L), and their mixtures until 120 h post-fertilization (hpf). Within the used concentration range, both single and combined exposures exhibited limited effects on the survival and hatching of zebrafish. However, the combined exposure of ZIF-NPs and CPC caused more severe effects on the heart rate at both 48 and 72 hpf. The combined exposure also induced significant hyperactivity (i.e., increasing the average swimming velocity) and oxidative stress in zebrafish larvae (at 120 hpf), although all single exposure treatments exhibited limited impacts. Furthermore, the level of reactive oxygen species (or malondialdehyde) exhibited a significantly positive correlation with the heart rate (or average swimming velocity) of zebrafish, suggesting that oxidative stress plays a role in mediating the combined toxicity of CPC and ZIF-NPs to zebrafish. Our findings suggest that the interaction of CPC and ZIF-NPs should not be ignored when assessing the potential risks of their mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Wei Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chongchen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate and their effects on antioxidant defence system and oxidative stress indices in Cyprinus carpio L.: an integrated in silico and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30622-30637. [PMID: 34993779 DOI: 10.1007/s11356-021-17864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study evaluated the homology modelling, in silico prediction and characterization of Cyprinus carpio cytochrome P450, as well as molecular docking experiments between the modelled protein and the surfactants sodium dodecyl sulphate (SDS), sodium laureth sulphate (SLES) and cetylpyridinium chloride (CPC). Homology modelling of cytochrome P450 was performed using the best fit template structure. The structure was optimized with 3D refine, and the ultimate 3D structure was checked with PROCHEK and ERRATA. ExPASy's ProtParam was likewise used to analyse the modelled protein's physiochemical and stereochemical attributes. To establish the binding pattern of each ligand to the targeted protein and its effect on the overall protein conformation, molecular docking calculations and protein-ligand interactions were performed. Our in silico analysis revealed that hydrophobic interactions with the active site amino acid residues of cytochrome p450 were more prevalent than hydrogen bonds and salt bridges. The in vivo analysis exhibited that exposure of fish to sublethal concentrations (10% and 30% of 96 h LC50) of SDS (0.34 and 1.02 mg/l), CPC (0.002 and 0.006 mg/l) and SLES (0.69 and 2.07 mg/l) at 15d, 30d and 45d adversely affected the oxidative stress and antioxidant enzymes (CAT, SOD, GST, GPx and MDA) in the liver of Cyprinus carpio. As a result, the study suggests that elicited oxidative stress, prompted by the induction of antioxidant enzymes activity, could be attributable to the stable binding of cytochrome P450 with SDS, CPC and SLES which ultimately leads to the evolution of antioxidant enzymes for its neutralization.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
8
|
Impacts of Cetylpyridinium Chloride on the Survival, Development, Behavior, and Oxidative Stress of Early-Life-Stage Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11040676. [PMID: 35453362 PMCID: PMC9032156 DOI: 10.3390/antiox11040676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cetylpyridinium chloride (CPC) is a widely used surfactant that has been detected in various water ecosystems. However, knowledge on the toxicity of CPC to fish remains scarce. Here, we examined the survival, development, behavior, and oxidative stress in the early life stages of zebrafish exposed to CPC (0, 4, 40, 400, and 1200 μg/L) until 120 h post-fertilization (hpf). Results showed that CPC induced significant mortality at 400 and 1200 μg/L, with a 120 h-EC50 value of 175.9 μg/L. CPC significantly decreased the heart rate of embryos (48 hpf; 4–400 μg/L) and larvae (72 hpf; 40 and 400 μg/L). At 120 hpf, CPC exhibited a dual effect on the locomotion activity (decreased at 400 μg/L and increased at 4 and 40 μg/L) and elevated the reactive oxygen species, superoxide dismutase, and glutathione levels in zebrafish larvae at 400 µg/L. In addition, a correlation analysis revealed that CPC-induced oxidative stress might play a critical role in mediating the cardiac and behavioral toxicity of CPC to zebrafish larvae. Our findings suggest that CPC may disturb the fish’s development, behavior, and oxidative status at environmentally relevant concentrations, which should not be ignored when assessing its potential risks to aquatic ecosystems.
Collapse
|
9
|
Kong S, Shen C, Meng Q. Fluorescently visualizing the penetration of anionic surfactants across cytoplasmic membrane and the subsequent damage on human cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20593-20602. [PMID: 34741264 DOI: 10.1007/s11356-021-16308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of chemically synthesized anionic surfactants would cause serious pollution of water and increase health risk to humans. However, the adverse impact of anionic surfactant on human cells has never been systematically demonstrated. In this paper, a series of fluorescent anionic surfactants containing a varying length of alkyl chain from C8 to C18 and a fixed hydrophilic head of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) were synthesized and utilized for visualizing the interaction between surfactants and cells. The obtained molecules exhibited blue fluorescence presenting a decreasing fluorescent intensity with the increasing length of alkyl chain from C8 to C18 while showed the same sequence of HPTS-C16>HPTS-C18>HPTS-C12>HPTS-C8 on either surface activity, cellular adsorption, or cytotoxicity. In opposite, HPTS which contained no hydrophobic chain and thus exhibited no surface activity showed no cellular adsorption and cytotoxicity. It seems that the ligand of the appropriate chain length (C16) onto the hydrophilic HPTS molecules could cause the largest surface activity, the most distinguished cellular adsorption as well as the most adverse cytotoxicity. As reflected by the dynamic fluorescent visualization, the surfactant molecules of HPTS-C16 initially bound with cell membrane and entered into the intracellular lumen before finally localized at the endoplasmic reticulum (ER) and damaged it into a swollen structure. It is most likely that the structure of hydrophobic chain could determine the surface activities of surfactants and hence affect their cellular uptake and cytotoxicity. This study could help us to understand the adverse impact of anionic surfactant on human cells and its correlation with the surface activities or, in another word, the hydrophobic chain length.
Collapse
Affiliation(s)
- Shuai Kong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China.
- Key Laboratory of Biomass Chemical Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
10
|
Fırat Ö, Erol R, Fırat Ö. An Investigation on Freshwater Fish Oreochromis niloticus (Linnaeus, 1758): Assessing Hemotoxic Effects of Different Copper Compounds Used as Nanomaterial or Pesticide. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:549-554. [PMID: 34216227 DOI: 10.1007/s00128-021-03320-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Considering the constant exposure of fish to copper oxide nanoparticles (CuO-NPs) and copper sulphate (CuSO4) in natural aquatic environments as a result of increased usage of these chemicals in industry, medicine and aquaculture/agriculture over the past few decenniums, the current investigation aimed to reveal their comparative hemotoxic effects on freshwater fish Oreochromis niloticus by measuring hematological and blood oxidative stress biomarkers and Cu levels. Fish were exposed to 0.05 mg/L CuO-NPs and CuSO4 for 4 and 21 days. Both copper forms decreased erythrocyte, hematocrit, and hemoglobin values, and superoxide dismutase and catalase activities while they elevated glucose-6-phosphate dehydrogenase activity, and glutathione, malondialdehyde and Cu levels. Leukocyte levels and glutathione peroxidase activity did not show any significant change. In a conclusion, the current research demonstrates that CuO-NPs and CuSO4 for O. niloticus have similar hemotoxic effects, however, CuO-NPs are slightly more toxic than CuSO4 regarding hematological changes and oxidative stress observed.
Collapse
Affiliation(s)
- Özgür Fırat
- Science and Letters Faculty, Biology Department, Adiyaman University, Adiyaman, Turkey
| | - Rabia Erol
- Science and Letters Faculty, Biology Department, Adiyaman University, Adiyaman, Turkey
| | - Özge Fırat
- Kahta Vocational School, Veterinary Department, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
11
|
Freitas R, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103715. [PMID: 34311115 DOI: 10.1016/j.etap.2021.103715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of salinity on the effects of sodium lauryl sulfate (SLS) was evaluated using the Mediterranean mussel Mytilus galloprovincialis, exposed for 28 days to SLS (control-0.0 and 4.0 mg/L) under three salinity levels (Control-30, 25 and 35). The effects were monitored using biomarkers related to metabolism and energy reserves, defence mechanisms (antioxidant and biotransformation enzymes) and cellular damage. The results revealed that non-contaminated mussels tended to maintain their metabolic capacity regardless of salinity, without activation of antioxidant defence strategies. On the contrary, although contaminated mussels presented decreased metabolic capacity at salinities 25 and 35, they were able to activate their antioxidant mechanisms, preventing cellular damage. Overall, the present findings indicate that SLS, especially under stressful salinity levels, might potentially jeopardize population survival and reproduction success since reduced metabolism and alterations on mussels' antioxidant mechanisms will impair their biochemical and, consequently, physiological performance.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy.
| |
Collapse
|
12
|
Bej S, Ghosh K, Chatterjee A, Saha NC. Assessment of biochemical, hematological and behavioral biomarkers of Cyprinus carpio on exposure to a type-II pyrethroid insecticide Alpha-cypermethrin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103717. [PMID: 34314872 DOI: 10.1016/j.etap.2021.103717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study assessed some important physiological biomarkers of freshwater edible fish Cyprinus carpio following exposure to 10 % (T1) and 20 % (T2) sublethal concentrations of Alpha-cypermethrin (A-cyp) over a total period of 45 days. Behavioral responses were noticed and Kaplan-Meier survival curves were prepared during acute toxicity study. Total serum protein concentration, total erythrocyte count, hemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and total leukocytes count were decreased significantly (p < 0.05), while the blood glucose, total serum lipid concentration, and clotting time were increased significantly (p < 0.05) over control. The most affected fish group and most significantly altered biomarker under toxic stress of A-cyp were identified using integrated biomarker response (IBR). The biomarker response index (BRI) values measured the overall health status of the treated fish and indicated that moderate adverse effects were exerted on the fish group exposed to T2 for 45 days.
Collapse
Affiliation(s)
- Suman Bej
- Environmental Biology and Ecotoxicology Laboratory, Post Graduate Department of Zoology, Bidhannagar College, Sector I, Salt Lake City, Kolkata, 700064 West Bengal, India; Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713 104 West Bengal, India; Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India.
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713 104 West Bengal, India.
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Barddhaman, West Bengal, India.
| |
Collapse
|
13
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Acute toxicity and sublethal effects of sodium laureth sulfate on oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108998. [PMID: 33556537 DOI: 10.1016/j.cbpc.2021.108998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
14
|
Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108943. [PMID: 33220514 DOI: 10.1016/j.cbpc.2020.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 01/30/2023]
Abstract
The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC50 value of profenofos, λ cyhalothrin and azadirachtin to Tubifex tubifex are 0.59, 0.13 and 82.15 mg L-1 respectively. Pesticide treated worms showed several behavioral abnormalities including increased mucus secretion, erratic movements, wrinkling activity and decreased clumping tendency during acute exposure. The percentage of autotomy increased significantly (p < 0.05) with the increasing concentration of the pesticides at 96 h of exposure. Sublethal concentrations of profenofos (0.059 and 0.118 mg L-1), λ cyhalothrin (0.013 and 0.026 mg L-1) and azadirachtin (8.2 and 16.4 mg L-1) caused significant alterations in growth rate and oxidative stress enzymes in T. tubifex during 14 days exposure period. The growth rate of the pesticide exposed worms decreased significantly (P < 0.05) in a concentration and duration-dependent manner. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) demonstrated a noteworthy (p < 0.05) initial induction followed by a subsequent reduction, while catalase (CAT) and malondialdehyde (MDA) exhibited noteworthy induction (p < 0.05) all through the exposure time. Through principal component analysis, correlation matrix, and integrated biomarker response, the effects of profenofos, λ cyhalothrin and azadirachtin on T. tubifex were distinguished. These results indicate that exposure to profenofos, λ cyhalothrin and azadirachtin affect survivability, change the behavioral responses, reduce the growth rate and induce oxidative stress enzymes in T. tubifex.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|