1
|
Banaee M, Zeidi A, Mikušková N, Faggio C. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res 2024; 202:5743-5761. [PMID: 38472509 DOI: 10.1007/s12011-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Nikola Mikušková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d'Alcontres 31, 98166, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Song J, Wang H, Li S, Qian P, Wang W, Shen M, Zhang Z, Zhou J, Li C, Yang Z, Hao Y, Du C, Dong Y. Genetic differentiation of Oncomelania hupensis robertsoni in hilly regions of China: Using the complete mitochondrial genome. PLoS Negl Trop Dis 2024; 18:e0012094. [PMID: 39591469 PMCID: PMC11630586 DOI: 10.1371/journal.pntd.0012094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/10/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVE Oncomelania hupensis robertsoni is the only intermediate host of Schistosoma japonicum in hilly regions of south-west China, which plays a key role during the transmission of Schistosomiasis. This study aimed to sequence the complete mitochondrial genome of Oncomelania hupensis robertsoni and analyze genetic differentiation of Oncomelania hupensis robertsoni. METHODS Samples were from 13 villages in Yunnan Province of China, with 30 Oncomelania hupensis snails per village, and the complete mitochondrial genome was sequenced. A comprehensive analysis of the genetic differentiation of Oncomelania hupensis robertsoni was conducted by constructing phylogenetic trees, calculating genetic distances, and analyzing identity. RESULTS A total of 26 complete mitochondrial sequences were determined. The length of genome ranged from 15,181 to 15,187 bp, and the base composition of the genome was A+T (67.5%) and G+C content (32.5%). This genome encoded 37 genes, including 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The phylogenetic trees and identity analysis confirmed that Oncomelania hupensis robertsoni was subdivided into Oncomelania hupensis robertsoni Yunnan strain and Sichuan strain, with a genetic distance of 0.0834. Oncomelania hupensis robertsoni Yunnan strain was further subdivided into two sub-branches, corresponding to "Yunnan North" and "Yunnan South", with a genetic distance of 0.0216, and the samples exhibited over 97% identity. CONCLUSION Oncomelania hupensis robertsoni is subdivided into Oncomelania hupensis robertsoni Yunnan strain and Sichuan strain. Oncomelania hupensis robertsoni Yunnan strain exhibits a higher level of genetic identity and clear north-south differentiation. This work reported the first mitochondrial genome of Oncomelania hupensis robertsoni Yunnan strain, which could be used as an important reference genome for Oncomelania hupensis, and also provide the important information for explaining the distribution pattern of Oncomelania hupensis robertsoni and control of Schistosoma japonicum.
Collapse
Affiliation(s)
- Jing Song
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming, People’s Republic of China
| | - Hongqiong Wang
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Meifen Shen
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| | - Zongya Zhang
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| | - Jihua Zhou
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| | - Chunying Li
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
| | - Zaogai Yang
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
| | - Yuwan Hao
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
| | - Chunhong Du
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| | - Yi Dong
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, People’s Republic of China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, People’s Republic of China
| |
Collapse
|
3
|
Han G, Kong R, Liu C, Huang K, Xu Q, Wu J, Fei J, Zhang H, Su G, Letcher RJ, Shi J, Rohr JR. Field and Laboratory Evidence That Chlorpyrifos Exposure Reduced the Population Density of a Freshwater Snail by Increasing Juvenile Mortality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17543-17554. [PMID: 39231302 DOI: 10.1021/acs.est.4c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.
Collapse
Affiliation(s)
- Guixin Han
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kai Huang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guanyong Su
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Department of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jason R Rohr
- Department of Biological Science, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Sharma P, Chukwuka A, Chatterjee S, Chakraborty D, Saha NC. Pathological and ultrastructural changes of Bellamya bengalensis under chronic carboxylic acid exposure at environmentally relevant levels: Inferences from general unified threshold model for survival (GUTS) predictions and hepatopancreatic integrity assessment. CHEMOSPHERE 2024; 361:142542. [PMID: 38844104 DOI: 10.1016/j.chemosphere.2024.142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to understand the effects of freshwater acidification, driven by industrial runoff, agricultural activities, and atmospheric deposition, on the freshwater mollusk Bellamya bengalensis. By systematically investigating the impact of two common carboxylic acids, acetic acid (AA) and benzoic acid (BA), this research employed diverse toxicological, pathological, and ecological assessments. We explored survival predictions through the generic unified threshold model of survival (GUTS-SD), examined oxidative stress responses, and investigated hepatopancreatic alterations. In the experimental design, Bellamya bengalensis were subjected to environmentally relevant sublethal concentrations (10%, 20% LC50) of AA (39.77 and 79.54 mg/l) and BA (31.41 and 62.82 mg/l) over 28 days. Acute toxicity tests revealed increased LC50 values, indicating heightened toxicity with prolonged exposure, particularly due to the greater potency of benzoic acid compared to acetic acid. The GUTS-SD model provided accurate predictions of time-specific effects on populations, presenting long-term exposure (100 days) LC50 values for AA (263.7 mg/l) and BA (330.9 mg/l). Sequentially, the integrated biomarker response (IBR) analysis across study intervals highlighted the 28-day interval as the most sensitive, with GST emerging as the most responsive enzyme to oxidative stress induced by AA and BA. Histopathological and ultrastructural assessments of the hepatopancreas showed severe alterations, including necrosis, vacuolation and disrupted micro-villi, which were especially pronounced in higher BA exposure concentrations. These findings highlight the health and survival impacts of carboxylic acid toxicity on Bellamya bengalensis, emphasizing the need for proactive measures to mitigate acidification in aquatic ecosystems. The broader ecological implications underscore the importance of effective management and conservation strategies to address ongoing environmental challenges.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Azubuike Chukwuka
- National Environmental Standards and Regulations Enforcement Agency, Osun State, Nigeria.
| | | | | | | |
Collapse
|
5
|
Kumar VS, Sarkar DJ, Das BK, Samanta S, Tripathi G, Das Sarkar S, Talukder A. Bioaccumulation of arsenic in fish (Labeo rohita) in presence of periphyton: ameliorative effect on oxidative stress, physiological condition, immune response and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34381-34395. [PMID: 38703316 DOI: 10.1007/s11356-024-33302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the use of periphyton to ameliorate toxic properties of arsenic (As) to Labeo rohita and also assesses the human food safety aspects. Fish were introduced to arsenite [As(III)] contaminated water (0.3 and 3 mg/L) along with periphyton. Biochemical, physiological and immunological parameters, including gene expression, were assessed after 30 days of exposure. Periphyton incorporation significantly improved (p < 0.05) the adverse effects of As on respiration, NH3 excretion and brain AChE activity by reducing oxidative stress and As bioaccumulation. The presence of periphyton in As(III) exposed fish (3 mg/L) increased the immune response (Immunoglobulin M and Complement C3) in the serum and the regulation of the respective immune genes in the anterior kidney was found to be similar to the control. A speciation study using LC-ICP-MS confirmed the high accumulation of As by periphyton (5.0-31.9 μg/g) as arsenate [As (V)], resulting in a lower amount of As in fish muscle. The calculated human health risk indices, Target Hazard Quotient (THQ) and Target Cancer risk (TCR) indicate that fish grown in periphyton-treated water may lower the human health risks associated with As. The study signifies the importance of periphyton-based aquaculture systems in As contaminated regions for safe fish production with enhanced yield.
Collapse
Affiliation(s)
| | - Dhruba Jyoti Sarkar
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Basanta Kumar Das
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| | - Srikanta Samanta
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Soma Das Sarkar
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Anjon Talukder
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| |
Collapse
|
6
|
Ibrahim AM, Youssef AA, Youssef ABA, Nasr SM. Biological, biochemical and genotoxicological alterations of Benzylamine on Biomphalaria alexandrina snails and its Schistosoma mansoni larvicidal potential. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105855. [PMID: 38685235 DOI: 10.1016/j.pestbp.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17β Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt.
| | - Alaa A Youssef
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Abo Bakr A Youssef
- Agricultural Genetics Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sami M Nasr
- Biochemistry, Molecular Biology and Medicinal chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
7
|
Seong Wei L, Rahim MSAA, Yeu Hooi K, Khoo MI, Mohamad Nor A, Wee W. Comparative analysis of growth and health of juvenile African catfish ( Clarias gariepinus) fed with different starch diets. Heliyon 2024; 10:e28224. [PMID: 38560210 PMCID: PMC10981047 DOI: 10.1016/j.heliyon.2024.e28224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Mohd Shaiful Azman Abdul Rahim
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Kon Yeu Hooi
- Department of Johor State Fisheries Complex, Pendas Laut Road, 81550, Gelang Patah, Johor, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Malaysia
| | - Azra Mohamad Nor
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
8
|
Ibrahim AM, Bekhit M, Sokary R, Hammam O, Atta S. Toxicological, hepato-renal, endocrine disruption, oxidative stress and immunohistopathological responses of chitosan capped gold nanocomposite on Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105559. [PMID: 37666595 DOI: 10.1016/j.pestbp.2023.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The present investigation aimed to synthesize chitosan‑gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17β Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Sokary
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Campos S, Leite C, Pinto J, Henriques B, Soares AMVM, Conradi M, Pereira E, Freitas R. Behavioural and biochemical responses of the sea snail Tritia reticulata to lithium concentration gradient. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106629. [PMID: 37459717 DOI: 10.1016/j.aquatox.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Lithium (Li) is present in many modern technologies, most notably in rechargeable batteries. Inefficient recycling strategies for electronic waste containing this element may result in its release into aquatic systems, which may induce harmful effects on wildlife. The present study evaluated the effect of Li contamination on the gastropod Tritia reticulata exposed to different concentrations of Li (100, 200, 500 and 1000 µg L-1) for 21 days. Biochemical analyses showed that this species was not significantly affected by this contaminant at the cellular level, as no significant differences were observed in terms of metabolism, oxidative stress, and neurotoxicity. Results further revealed that snails attempted to avoid Li accumulation by burying in the sediment at a faster rate when exposed to the highest concentrations (500 and 1000 µg L-1). More research is needed to fully assess the response of T. reticulata to Li contamination, such as investigating longer exposure periods or other endpoints.
Collapse
Affiliation(s)
- Sara Campos
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, University of Aveiro, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruno Henriques
- Department of Chemistry, University of Aveiro, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Mercedes Conradi
- Department of Zoology, Faculty of Biology, University of Sevilla, Sevilla, Spain
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
10
|
Saha S, Banerjee P, Saha NC, Chukwuka AV. Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:94. [PMID: 37171504 DOI: 10.1007/s00128-023-03734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas-743611, Pathankhali, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| |
Collapse
|
11
|
Helmy ET, Ayyad MA, Ali MA, Mohamedbakr HG, Pan JH. Biochemical, Histological Changes, Protein Electrophoretic Pattern, and Field Application of CuPb-Ferrite/TiO 2 Nanocomposites for Controlling Terrestrial Gastropod Eobania vermiculata (Müller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6626-6634. [PMID: 37070858 DOI: 10.1021/acs.jafc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.
Collapse
Affiliation(s)
- Elsayed T Helmy
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria 12345, Egypt
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - Mona A Ali
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - H G Mohamedbakr
- Faculty of Science, Chemistry Department, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Jia Hong Pan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
12
|
Jyoti D, Sinha R, Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103927. [PMID: 35809826 DOI: 10.1016/j.etap.2022.103927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a major concern of the modern era as it affects all the principal aspects of the environment, especially the hydrosphere. Pollution with heavy metals has unequivocally threatened aquatic bodies and organisms as these metals are persistent, non-biodegradable, and toxic. Heavy metals tend to accumulate in the environment and eventually in humans, which makes their efficient removal a topic of paramount importance. Treatment of metal-contaminated water can be done both via chemical and biological methods. Where remediation through conventional methods is expensive and generates a large amount of sludge, biological methods are favoured over older and prevalent chemical purification processes because they are cheaper and environment friendly. The present review attempts to summarise effective methods for the remediation of water contaminated with heavy metals. We concluded that in biological techniques, bio-sorption is among the most employed and successful mechanisms because of its high efficacy and eco-friendly nature.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173 229, India.
| | - Reshma Sinha
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
13
|
Chronic Effects of Diazinon® Exposures Using Integrated Biomarker Responses in Freshwater Walking Catfish, Clarias batrachus. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210902] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diazinon exposures have been linked to the onset of toxic pathways and adverse outcomes in aquatic species, but the ecological implications on model species are not widely emphasized. The objective of this study was to determine how the organophosphate pesticide diazinon affected hematological (hemoglobin, total red blood count, total white blood count, and mean corpuscular hemoglobin), growth (condition factor, hepatosomatic index, specific growth rate), biochemical (total serum glucose, total serum protein), and endocrine (growth hormone, tri-iodothyronine, and thyroxine) parameters in Clarias batrachus after chronic exposure. Diazinon was administered at predefined exposure doses (0.64 and 1.28 mg/L) and monitored at 15, 30, and 45 days into the investigation. Observation for most biomarkers revealed patterns of decreasing values with increasing toxicant concentration and exposure duration. Correlation analysis highlighted a significant inverse relationship between variables (mean corpuscular hemoglobin, condition factor, specific growth rate, tri-iodothyronine, thyroxine, and total serum protein) and elevated chronic diazinon exposure concentrations. The integrated indices (IBR and BRI) indexes were used to provide visual and understandable depictions of toxicity effects and emphasized the relativity of biomarkers in terms of sensitivity and magnitude or severity of responses under graded toxicant exposures. The significant damage reflected by evaluated parameters in diazinon exposure groups compared to control portends risks to the health of local fish populations, including Clarias batrachus in aquatic systems adjacent to agrarian landscapes.
Collapse
|