1
|
Koene JM, Jackson DJ, Nakadera Y, Cerveau N, Madoui MA, Noel B, Jamilloux V, Poulain J, Labadie K, Da Silva C, Davison A, Feng ZP, Adema CM, Klopp C, Aury JM, Wincker P, Coutellec MA. The genome of the simultaneously hermaphroditic snail Lymnaea stagnalis reveals an evolutionary expansion of FMRFamide-like receptors. Sci Rep 2024; 14:29213. [PMID: 39587195 PMCID: PMC11589774 DOI: 10.1038/s41598-024-78520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
The great pond snail Lymnaea stagnalis has served as a model organism for over a century in diverse disciplines such as neurophysiology, evolution, ecotoxicology and developmental biology. To support both established uses and newly emerging research interests we have performed whole genome sequencing (avg.176 × depth), assembly and annotation of a single individual derived from an inbred line. These efforts resulted in a final assembly of 943 Mb (L50 = 257; N50 = 957,215) with a total of 22,499 predicted gene models. The mitogenome was found to be 13,834 bp long and similarly organized as in other lymnaeid species, with minor differences in location of tRNA genes. As a first step towards understanding the hermaphroditic reproductive biology of L. stagnalis, we identified molecular receptors, specifically nuclear receptors (including newly discovered 2xDNA binding domain-NRs), G protein-coupled receptors, and receptor tyrosine kinases, that may be involved in the cellular specification and maintenance of simultaneously active male and female reproductive systems. A phylogenetic analysis of one particular family of GPCRs (Rhodopsin neuropeptide FMRFamide-receptor-like genes) shows a remarkable expansion that coincides with the occurrence of simultaneous hermaphroditism in the Euthyneura gastropods. As some GPCRs and NRs also showed qualitative differences in expression in female (albumen gland) and male (prostate gland) organs, it is possible that separate regulation of male and female reproductive processes may in part have been enabled by an increased abundance of receptors in the transition from a separate-sexed state to a hermaphroditic condition. These findings will support efforts to pair receptors with their activating ligands, and more generally stimulate deeper insight into the mechanisms that underlie the modes of action of compounds involved in neuroendocrine regulation of reproduction, induced toxicity, and development in L. stagnalis, and molluscs in general.
Collapse
Affiliation(s)
- J M Koene
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - D J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Y Nakadera
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - N Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - M A Madoui
- SEPIA, Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - B Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - V Jamilloux
- URGI, INRAE, Université Paris-Saclay, Route de Saint-Cyr, 78026, Versailles, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - K Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - C Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - A Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Z P Feng
- Department of Physiology, University of Toronto, 1 King's College, Toronto, ON, M5S 1A8, Canada
| | - C M Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87112, USA
| | - C Klopp
- INRAE, Sigenae, BioInfoMics MIAT, UR875, INRAE, Castanet-Tolosan, France
| | - J M Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - P Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - M A Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), L'Institut Agro, Ifremer, INRAE, 35042, Rennes, France.
| |
Collapse
|
2
|
Li H, Chen Y. Whole-genome resequencing to explore genome‑wide single nucleotide polymorphisms and genes associated with avian leukosis virus subgroup J infection in chicken. 3 Biotech 2023; 13:417. [PMID: 38031589 PMCID: PMC10682322 DOI: 10.1007/s13205-023-03834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic loss in the poultry industry. Currently, no effective vaccine or drug is available against this virus. Therefore, it is imperative to explore and understand the molecular regulatory mechanisms underlying ALV-J infection. In this study, blood samples from 21 ALV-J-infected and 22 ALV-J-uninfected (DZ) chickens (JZ) were analyzed by whole-genome resequencing (WGR). By combining the fixation index (FST) with the nucleotide diversity (π) ratio based on WGR data, 425 candidate genes were identified. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the top 20 enriched pathways, among which 9 pathways were significantly associated with diseases, including endometrial cancer, Chagas disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, colorectal cancer, endocrine resistance, fluid shear stress, atherosclerosis, basal cell carcinoma, non-small cell lung cancer, and melanoma. Fourteen single nucleotide polymorphisms related to twelve genes showed a notable difference between DZ and JZ group chickens. The genes included COMMD3, PPP1CB, VEGFA, GTF2H1, NOTCH2, ITPR1, FGFR4, GNAS, NECTIN1, WNT2B, PPP1CC, and MRC2. These findings may provide a valuable foundation for further exploration of the pathogenesis of ALV-J in chickens.
Collapse
Affiliation(s)
- Hongwei Li
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| | - Yuan Chen
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| |
Collapse
|
3
|
Ren X, Bian X, Shao H, Jia S, Yu Z, Liu P, Li J, Li J. Regulation Mechanism of Dopamine Receptor 1 in Low Temperature Response of Marsupenaeus japonicus. Int J Mol Sci 2023; 24:15278. [PMID: 37894957 PMCID: PMC10607110 DOI: 10.3390/ijms242015278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine receptors (DARs) are important transmembrane receptors responsible for receiving extracellular signals in the DAR-mediated signaling pathway, and are involved in a variety of physiological functions. Herein, the D1 DAR gene from Marsupenaeus japonicus (MjDAD1) was identified and characterized. The protein encoded by MjDAD1 has the typical structure and functional domains of the G-protein coupled receptor family. MjDAD1 expression was significantly upregulated in the gills and hepatopancreas after low temperature stress. Moreover, double-stranded RNA-mediated silencing of MjDAD1 significantly changed the levels of protein kinases (PKA and PKC), second messengers (cyclic AMP (cAMP), cyclic cGMP, calmodulin, and diacyl glycerol), and G-protein effectors (adenylate cyclase and phospholipase C). Furthermore, MjDAD1 silencing increased the apoptosis rate of gill and hepatopancreas cells. Thus, following binding to their specific receptors, G-protein effectors are activated by MjDAD1, leading to DAD1-cAMP/PKA pathway-mediated regulation of caspase-dependent mitochondrial apoptosis. We suggest that MjDAD1 is indispensable for the environmental adaptation of M. japonicus.
Collapse
Affiliation(s)
- Xianyun Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xueqiong Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Huixin Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoting Jia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Zhenxing Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
5
|
EMR1/ADGRE1 Expression in Cancer Cells Upregulated by Tumor-Associated Macrophages Is Related to Poor Prognosis in Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123121. [PMID: 36551877 PMCID: PMC9775542 DOI: 10.3390/biomedicines10123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
EMR1, a member of the adhesion G protein-coupled receptor family (ADGRE1), is a macrophage marker that is abnormally expressed in cancer cells. However, its clinical significance in colorectal cancer (CRC) is not well-known. In this investigation, EMR1 expression in tumor cells (EMR1-TC) was found in 91 (22.8%) of the 399 CRC samples tested by immunohistochemical staining and showed a significant relationship with lymph node metastasis. Furthermore, EMR1-TC was significantly associated with CD68+ CD163+ tumor-associated macrophages (TAMs), and CRC with a high combined EMR1-TC+CD68+CD163+ score showed worse recurrence-free survival prognosis. In an in vitro co-culture assay of colon cancer cells with myeloid cells, we found that EMR1 expression significantly upregulated in cancer cells was induced by macrophages. In addition, there was increased expression of M2 markers (CD163 and interleukin-6 & 10) in myeloid portion, while that of M1 markers (CD86 and iNOS) remained unchanged. Accordingly, upon treatment with M2 macrophage polarization inhibitors (O-ATP, trametinib, bardoxolone methyl), EMR1 expression reduced significantly, along with M2 markers (CD163 and interleukin-6 & 10). In conclusion, EMR1-TC was a high-risk factor for lymph node metastasis and correlated with poor recurrence free survival, particularly in patients with TAM-rich CRC. Furthermore, EMR1 expression in colon cancer cells may be related to M2 macrophage polarization and vice versa.
Collapse
|
6
|
Afolabi HA, Salleh SM, Zakaria Z, Ch’ng ES, Mohd Nafi SN, Abdul Aziz AAB, Irekeola AA, Wada Y, Al-Mhanna SB. A GNAS Gene Mutation's Independent Expression in the Growth of Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14225480. [PMID: 36428574 PMCID: PMC9688108 DOI: 10.3390/cancers14225480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Globally, colorectal carcinoma CRC is the third most common cancer and the third most common reason for cancer-associated mortality in both genders. The GNAS mutations are significantly linked with poor prognosis and failed treatment outcomes in CRC. A systematic review and meta-analysis of multiple studies executed following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria and registered with PROSPERO (registration number: CRD42021256452). The initial search includes a total of 271 publications; however, only 30 studies that merit the eligibility criteria were eventually chosen. Data analysis via OpenMeta Analyst and comprehensive meta-analysis 3.0 (CMA 3.0) software were used to investigate the prevalence of GNAS gene mutation among CRC patients. The meta-analysis consisted of 10,689 participants with most being males 6068/10,689 (56.8%). Overall, prevalence of GNAS mutations was 4.8% (95% CI: 3.1−7.3) with I2 = 94.39% and (p < 0.001). In 11/30 studies, the frequency of GNAS gene mutations was majorly in codons R201C [40.7% (95% CI: 29.2−53.2%)] and in codon R201H [39.7% (95% CI = 27.1−53.8)]. Overall prevalence of GNAS mutations was highest among the male gender: 53.9% (95% CI: 48.2−59.5%: I2 = 94.00%, (p < 0.001), tumour location (colon): 50.5% (95% CI: 33.2−67.6%: I2 = 97.93%, (p < 0.001), tumour grade (Well): 57.5% (95% CI: 32.4−79.2%: I2 = 98.10%, (p < 0.001) and tumour late stage: 67.9% (95% CI: 49.7−84.3%: I2 = 98.%, (p < 0.001). When stratified according to study location, a higher prevalence was observed in Japan (26.8%) while Italy has the lowest (0.4%). Overall prevalence of GNAS gene mutations was 4.8% with codons R201C and R201H being the most mutated, and the results conformed with numerous published studies on GNAS mutation.
Collapse
Affiliation(s)
- Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Hospital Universiti Sains Malaysia (HUSM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: or
| | - Zaidi Zakaria
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ewe Seng Ch’ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia USM, Kepala Batas 13200, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Bin Abdul Aziz
- Department of Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Sameer Badri Al-Mhanna
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
7
|
Kim DH, Byeon E, Kim MS, Lee YH, Park JC, Hagiwara A, Lee JS. The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:226-242. [PMID: 35262805 DOI: 10.1007/s10126-022-10102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Départment Des Sciences, Université Sainte-Anne, Church Point, NS, B0W 1M0, Canada
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|