1
|
El-Shobokshy SA, Abo-Samaha MI, Khafaga AF, Fakiha KG, Khatab SA, Abdelmaksoud EM, Khalek Soltan MA, Othman SI, Rudayni HA, Allam AA, Emam M. The beneficial effect of nanomethionine supplementation on growth performance, gene expression profile, and histopathology of heat-stressed broiler chicken. Poult Sci 2024; 103:103206. [PMID: 37980757 PMCID: PMC10663956 DOI: 10.1016/j.psj.2023.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
This study investigated the effects of nanomethionine (nano-meth) on performance, antioxidants, and gene expression of HSP70, HSP90 and Heat Shock factor-1 (HSF-1) from the liver, and TLR4 from the jejunum, of broiler chickens reared under normal temperatures or under heat stress. Three hundred 1-day-old chicks were randomly assigned to 5 treatment groups. Group 1 served as control. Under normal temperature, birds in group 2 received nano-meth (10 mL/L of drinking water) from d1 until the experiment ended. Group 3 birds were heat-stressed (HS) and did not receive any supplementation. Group 4 received nano-meth in the same dose from d1 old until experiment ended, and the birds were exposed to HS. Group 5 birds were HS and received supplementation of nano-meth during the HS period only. Nano-meth improved (P < 0.0001) final body weight, weight gain, feed conversion ratio, and also decreased (P < 0.0001) the effect of HS on growth performance. Reduction (P < 0.0001) in malondialdehyde and changes in antioxidant enzymes GPX and CAT activity indicated the antioxidant effect of nano-meth. Nano-meth supplementation caused an increase in the expression of HSP70 , HSP90 and HSF1, and a downregulation of TLR4 gene expression. Additionally, nano-meth-supplemented groups showed marked improvement in the histological liver structure, intestinal morphology and villus height compared to control or HS groups.
Collapse
Affiliation(s)
- Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Khloud G Fakiha
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Shymaa A Khatab
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | | | - Mosaad Abdel Khalek Soltan
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
2
|
Kubota S, Pasri P, Okrathok S, Jantasaeng O, Rakngam S, Mermillod P, Khempaka S. Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens. Poult Sci 2023; 102:102797. [PMID: 37285691 PMCID: PMC10250161 DOI: 10.1016/j.psj.2023.102797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Sperm storage tubules (SSTs) in the uterovaginal junction (UVJ) of the oviduct are major sites of sperm storage after artificial insemination or mating. Female birds may regulate sperm motility in the UVJ. Heat stress can decrease the reproductive ability of broiler breeder hens. However, its effects on UVJ remain unclear. Changes in gene expression aid in understanding heat stress-affected molecular mechanisms. Herein, we wanted to conduct a comparative transcriptomic analysis to identify the differentially expressed genes (DEGs) in the UVJ of breeder hens under thermoneutral (23°C) and heat stress (36°C for 6 h) conditions. The results indicated that cloacal temperatures and respiratory rates were significantly increased in heat-stressed breeder hens (P < 0.05). Total RNA was extracted from the hen UVJ tissues containing SSTs after heat exposure. Transcriptome analysis identified 561 DEGs, including 181 upregulated DEGs containing heat shock protein (HSP) transcripts and 380 downregulated DEGs containing immune-related genes, such as interleukin 4-induced 1, radical S-adenosyl methionine domain containing 2, and 2'-5'-oligoadenylate synthetase like, in heat-stressed hens. Gene Ontology analysis revealed the significantly enriched terms involving HSPs. Kyoto Encyclopedia of Genes and Genomes analysis identified 9 significant pathways, including the protein processing in endoplasmic reticulum (11 genes including HSPs), neuroactive ligand-receptor interaction (13 genes including luteinizing hormone/choriogonadotropin receptor), biosynthesis of amino acids (4 genes including tyrosine aminotransferase), ferroptosis (3 genes including heme oxygenase 1), and nitrogen metabolism (carbonic anhydrase [CA]-12 and CA6) pathways. Protein-protein interaction network analysis of DEGs revealed 2 large networks, one containing upregulated HSPs and the other containing downregulated interferon-stimulating genes. Overall, heat stress inhibits innate immunity in the UVJ tissues of broiler chickens, and heat-stressed chickens protect their cells by increasing the expression levels of HSPs. The identified genes are potential candidates for further exploration of the UVJ in heat-stressed hens. The identified molecular pathways and networks increase our understanding of the sperm storage reservoirs (UVJ containing SSTs) within the reproductive tract and may be used to prevent heat stress-induced fertility loss in breeder hens.
Collapse
Affiliation(s)
- Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phocharapon Pasri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supattra Okrathok
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Orapin Jantasaeng
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sitthipong Rakngam
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pascal Mermillod
- UMR de Physiologie de la Reproduction et des Comportements, National Research Institute for Agronomy, Food and Environment (INRAe), 37380 Nouzilly, France
| | - Sutisa Khempaka
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
4
|
Tang LP, Liu YL, Ding KN, Hou XJ, Qin JJ, Zhang YA, Liu HX, Shen XL, He YM. Chai Hu oral liquid enhances the immune functions of both spleen and bursa of Fabricius in heat-stressed broilers through strengthening TLR4-TBK1 signaling pathway. Poult Sci 2021; 100:101302. [PMID: 34289428 PMCID: PMC8313588 DOI: 10.1016/j.psj.2021.101302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Heat stress can affect the poultry production and immune status of broilers. Heat stress disrupts intestinal integrity and increases intestinal inflammation, which is related with body immune dysfunction. Chai Hu oral liquid used as an antipyretic and anti-inflammatory drug is widely used in exogenous fever of poultry, but its resistance to heat stress and the mechanism is still unclear. In this study, a chronic heat stressed broilers model was established to explore the mechanisms of broilers’ immune function changes and the effects of Chai Hu oral liquid. In this study, a total of 480 broilers were randomly divided into 6 groups with 80 replicates. Heat stress (HS) group broilers were stressed at 35 ± 2°C for 5 or 10 consecutive d with 6 h/d. Heat stressed (for 5 or 10 d) broilers were given with Jieshu KangreSan (Positive), Chai Hu oral liquid high, middle and low dosage (CH-High, CH-Mid, CH-Low) by oral administration. Birds in control group were treated with the same volume of PBS only in 25 ± 2°C. All birds were sacrificed at last heat stress challenged day. Changes in immune function were assessed by immune organs index, serum IFN-γ level, gene and protein expressions of immune factors in spleen and bursa of Fabricius. Results from this experiment showed that heat stress enhanced the immune organs’ edema by directly increased the organs indexes of spleen and bursa of Fabricius in broilers. Heat stress for 10 d also increased bursa of Fabricius HSP70 protein level and significantly lowered the spleen and bursa of Fabricius proteins expressions of IFN-α, IFN-β, and IFN-γ in broilers. The IFN-β and IFN-γ protein levels in spleen and bursa of Fabricius also decreased in heat stressed broilers for 5 d. The gene and protein expressions of TLR4 and TBK1 markedly decreased in spleen and bursa of Fabricius of broilers treated with chronic heat stress. Chai Hu oral liquid reduced edema of immune organs and elevated TLR4-TBK1 signaling pathway to release immune factors. Above results indicated that chronic heat stress induced impaired immune function by inhibiting TLR4-TBK1 signaling pathway, and Chai Hu oral liquid had effective protection of body's immune ability by enhancing this signaling pathway.
Collapse
Affiliation(s)
- Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yi-Lei Liu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xiao-Jiao Hou
- Beijing Centre Biology Co., Ltd, Beijing 102600, China
| | - Jun-Jie Qin
- Beijing Centre Biology Co., Ltd, Beijing 102600, China
| | - Yi-An Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Han-Xiao Liu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
5
|
Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals (Basel) 2020; 11:ani11010046. [PMID: 33383690 PMCID: PMC7823582 DOI: 10.3390/ani11010046] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New genomic tools have been used as an instrument in order to assess the molecular pathway involved in heat stress resistance. Local chicken breeds have a better attitude to face heat stress. This review aims to summarize studies linked to chickens, heat stress, and heat shock protein. Abstract Chicken products are the most consumed animal-sourced foods at a global level across greatly diverse cultures, traditions, and religions. The consumption of chicken meat has increased rapidly in the past few decades and chicken meat is the main animal protein source in developing countries. Heat stress is one of the environmental factors which decreases the productive performance of poultry and meat quality. Heat stress produces the over-expression of heat shock factors and heat shock proteins in chicken tissues. Heat shock proteins regulate several molecular pathways in cells in response to stress conditions, changing the homeostasis of cells and tissues. These changes can affect the physiology of the tissue and hence the production ability of chickens. Indeed, commercial chicken strains can reach a high production level, but their body metabolism, being comparatively accelerated, has poor thermoregulation. In contrast, native backyard chickens are more adapted to the environments in which they live, with a robustness that allows them to survive and reproduce constantly. In the past few years, new molecular tools have been developed, such as RNA-Seq, Single Nucleotide Polymorphisms (SNPs), and bioinformatics approaches such as Genome-Wide Association Study (GWAS). Based on these genetic tools, many studies have detected the main pathways involved in cellular response mechanisms. In this context, it is necessary to clarify all the genetic and molecular mechanisms involved in heat stress response. Hence, this paper aims to review the ability of the new generation of genetic tools to clarify the molecular pathways associated with heat stress in chickens, offering new perspectives for the use of these findings in the animal breeding field.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
- Correspondence:
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| |
Collapse
|
6
|
Elhusseini R, Fares EJ, Obeid O. Phosphorus supplementation raised the heart rate of male water polo players during a randomised graded dryland exercise test. BMJ Open Sport Exerc Med 2020; 6:e000714. [PMID: 32405431 PMCID: PMC7202719 DOI: 10.1136/bmjsem-2019-000714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2020] [Indexed: 11/04/2022] Open
Abstract
ObjectiveThe impact of phosphorus supplementation on athletic performance is unclear. Ingestion of phosphorus for several days has been reported to increase cardiac capacity, improve oxygen muscle kinetics and enhance lactate buffering capacity. Recent studies have shown that phosphorus ingestion with a meal increases postprandial glucose uptake and thermogenesis. The present study aimed to assess the effect of acute phosphorus ingestion with a meal on specific workload parameters.MethodsA double-blind, crossover trial of 12 male water polo players between 18 and 22 years old was conducted. Overnight fasted subjects were asked to cycle for 20 min before ingesting 100 g of glucose with phosphorus or placebo (400 mg). Three hours later, they were asked to perform a graded cycling exercise for 25 min.ResultsExpenditure, respiratory quotient, perception of fatigue and exercise efficiency were similar between treatments. However, heart rate was significantly higher in the phosphorus group (142±10 beats/min) compared with placebo (135±10 beats/min).ConclusionExercise performance 3 hours after the coingestion of glucose with phosphorus did not affect substrate use, while heart rate was increased. The heart rate increase could be attributed to a rise in core body temperature.Trial registration numberNCT03101215.
Collapse
Affiliation(s)
- Rami Elhusseini
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Elie-Jacques Fares
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Khafaga AF, Noreldin AE, Taha AE. The adaptogenic anti-ageing potential of resveratrol against heat stress-mediated liver injury in aged rats: Role of HSP70 and NF-kB signalling. J Therm Biol 2019; 83:8-21. [PMID: 31331528 DOI: 10.1016/j.jtherbio.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/13/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022]
Abstract
Heat stress (HS) is a major international problem which has attracted a considerable attention due to its oxidative tissue effects and high morbidity and mortality rates, especially among elderly people. Discovering an effective antioxidant is pivotal for overcoming HS-induced injury. Therefore, the aim of this study was to estimate the hepatic protective effects of orally supplemented resveratrol (RES) against HS-mediated liver injury in young and old male Wistar albino rats. Compared to control rats, RES administered orally at a dose of 20 mg/kg BW for 21 successive days efficiently ameliorated HS-induced oxidative damage by significantly increasing (P ≤ 0.05) the level of reduced glutathione and glutathione peroxidase, and decreasing the levels of malondialdehyde and TNF-α in hepatic tissue of both young and aged rats. However, level of NF-κB was downregulated significantly in aged rats rather than young rats. Moreover, RES significantly decreased (P ≤ 0.05) the serum levels of aspartate transaminase and alkaline phosphatase in both ages of rats compared to their corresponding HS-stressed rats. Furthermore, RES upregulated the immunohistochemical expression of caspase 3 and heat shock protein 70 in young and aged rats, however it was more pronounced in young one. In addition, RES administration moderately normalized (P ≤ 0.0001) the harmful effects of HS on the hepatic architecture of both young and aged rats. In conclusion, this study reveals for the first time that RES exerts promising hepato-ameliorative effects against HS-induced oxidative stress in the young and aged rats via its antioxidant, anti-inflammatory, and anti-apoptotic effect, as well as via its inhibitory effect against the NF-κB signalling in a cellular system.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
8
|
Parida S, Mishra SR, Mishra C, Mohapatra S, Dalai N, Mahapatra APK, Kundu AK. Impact of heat stress on transcriptional abundance of HSP70 in cardiac cells of goat. Anim Biotechnol 2019; 31:223-228. [PMID: 30857447 DOI: 10.1080/10495398.2019.1583574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The present study was aimed to document the effect of heat stress on the transcriptional abundance of heat shock protein 70 (HSP70) mRNA in cultured cardiac cells of goat. The heart tissues (n = 6) from different goats were used for the culture study. The cardiac cells obtained from different heart tissues were cultured in 24 well cell culture plates and incubated in a humidified CO2 (5%) incubator at 37 °C. The cardiac cells were allowed to become 75-80% confluent after 72 h of incubation. Thereafter, the cardiac cells were subjected to heat exposure at 42 °C (heat exposed) for 0, 20, 60 and 100 min. The cardiac cells exposed to heat stress at 42 °C for 0 min was taken as control. The relative abundance of HSP70 mRNA was gradually up-regulated (p < .05) from 20 to 100 min of heat exposure and reached the zenith (p < .05) at 100 min of heat challenge. The present finding highlights that, HSP70 could possibly act as a cytoprotective factor and may promote cardiac cell survival against the detrimental effect of heat stress. Moreover, this study may serve as the harbinger to conduct further research work on expression kinetics of HSP70 in cardiac cells of goat including other livestock species.
Collapse
Affiliation(s)
- S Parida
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C Mishra
- Department of Animal Genetics & Breeding, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S Mohapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - N Dalai
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A P K Mahapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
9
|
Yang Z, Liu C, Zheng W, Teng X, Li S. The Functions of Antioxidants and Heat Shock Proteins Are Altered in the Immune Organs of Selenium-Deficient Broiler Chickens. Biol Trace Elem Res 2016; 169:341-51. [PMID: 26123162 DOI: 10.1007/s12011-015-0407-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Despite increasing evidence indicating the essential involvement of selenium (Se) in the immune system, the effect of Se deficiency on the regulation of oxidative stress and heat shock proteins (Hsps) in broiler chickens is still unclear. In the present study, we established an exudative diathesis (ED) broiler chicken model caused by Se deficiency. We then analyzed histological observations and detected the expression levels of Hsps and antioxidant indexes in immune tissues. The antioxidant function declined remarkably, and most of the Hsp expression levels increased significantly in the spleen, thymus, and bursa of Fabricius of the broiler chicks with ED (except the messenger RNA (mRNA) levels of Hsp27, Hsp40, and Hsp70, which decreased in thymus tissues from the treatment groups); therefore, constitutive oxidation resistance and higher Hsps in broiler chicks with ED caused defects in immune organ morphology and function, as evidenced by abnormal histological structures: red pulp broadening and lymphocytes in the cortex and medulla of the thymic lobule decreased distinctly and distributed loosely. These results underscore the importance of Se in establishing an immune organ microenvironment conducive to normal function.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Weijia Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
CHEN HONGBO, ADAM ABDELNASIR, CHENG YANFEN, TANG SHU, HARTUNG JÖRG, BAO ENDONG. Localization and expression of heat shock protein 70 with rat myocardial cell damage induced by heat stress in vitro and in vivo. Mol Med Rep 2014; 11:2276-84. [DOI: 10.3892/mmr.2014.2986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
|
11
|
Xing T, Xu XL, Zhou GH, Wang P, Jiang NN. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J Anim Sci 2014; 93:62-70. [PMID: 25403192 DOI: 10.2527/jas.2014-7831] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine the effects of different transport times on broilers during summer on stress, meat quality, and early postmortem muscle metabolites. Arbor Acres broiler chickens (n = 105) were randomly categorized into 5 treatments: unstressed control, 0.5 h, 1 h, 2 h, and 4 h transport. Each treatment consisted of 3 replicates with 7 birds each. All birds (except the control group) were transported according to a designed protocol. With the extension of transport time, the activities of plasma creatine kinase (CK) and lactate dehydrogenase (LDH) gradually increased. The content of heat shock protein 70 (Hsp70) did not change significantly during 0.5 h transport compared to the control group, but was significantly higher (P < 0.05) at 1 h or more of transport time. Also, transport times of 2 h or more resulted in a death rate of 20%-33% of broilers. We found that the breast meat in the 0.5 h transport group had significantly (P < 0.05) higher L* values, drip loss, cooking loss, AMP/ATP ratio, and phosphorylation of AMP-activated protein kinase (p-AMPK). In addition, pH24h was lower compared to the control group, increasing the likelihood of pale, soft, and exudative (PSE)-like meat. However, no significant variations were found in meat color, drip loss, or cooking loss in other transport groups compared to the control group under the condition of this study. Muscle glycogen content decreased with time of transportation. There were significant correlations among p-AMPK and meat quality (P < 0.05). These results indicate that preslaughter transport during summer may cause severe physiological and biochemical changes of broilers. Further investigations studying the deeper relationship between biological indicators and meat quality according to the similar transport conditions would provide a better understanding of the effect of transport duration on meat quality.
Collapse
Affiliation(s)
- T Xing
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - X L Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - G H Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - P Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - N N Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Liu LL, He JH, Xie HB, Yang YS, Li JC, Zou Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult Sci 2014; 93:54-62. [PMID: 24570423 DOI: 10.3382/ps.2013-03423] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P < 0.001); serum GSH, growth hormone, and insulin-like growth factor-1 levels (P ≤ 0.01); and GSH-Px, SOD, and CAT activities (P < 0.001) compared with chickens that were fed diets without resveratrol during heat stress. In contrast, serum malonaldehyde concentrations were decreased (P < 0.001) in the chickens fed a resveratrol-supplemented diet. Heat stress also reduced (P < 0.05) the growth index of the bursa of Fabricus and spleen; however, it had no effect on the growth index of the thymus. The growth index of the bursa of Fabricius and spleen increased (P < 0.05) upon heat stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P < 0.01), but those of Hsp27 and Hsp90 mRNA in thymus were decreased (P < 0.01) under heat stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.
Collapse
Affiliation(s)
- L L Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | | | | | | | | | | |
Collapse
|
13
|
Dridi S, Decuypere E, Buyse J. Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle. Poult Sci 2013; 92:2745-53. [PMID: 24046423 DOI: 10.3382/ps.2013-03242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lines of evidence suggested that systems involved in the regulation of the stress responses and energy homeostasis are highly integrated. Because cerulenin, the natural antibiotic product of the fungus Cephalosporium ceruleans and a broad-spectrum fatty acid synthesis (FAS) inhibitor, has been shown to affect food intake and energy balance, and because the biomarker of stress Hsp-70 gene was found to interact directly with fatty acids, we hypothesized that cerulenin may regulate Hsp-70 gene expression. Therefore, the present study was undertaken to examine this issue. Cerulenin administration significantly (P < 0.05) decreased food intake and induced Hsp-70 mRNA levels in muscle, but not in liver or hypothalamus of 2-wk-old broiler chickens. These changes were accompanied by an unpregulation of muscle uncoupling protein and carnitine palmitoyltransferase 1 mRNA levels. This result indicated that the regulation of Hsp-70 gene expression in normal chickens, as estimated by oxidative stress indices [TBA reacting substances, ferric reducing/antioxidant power, and ceruloplasmin oxidase activity] levels, is tissue-specific. In attempt to discriminate between the effect of cerulenin and cerulenin-reduced food intake on Hsp-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses. Food deprivation for 16 h did not affect Hsp-70 gene expression in all tissues examined, indicating that the effect of cerulenin is independent of the inhibition of food intake. To ascertain whether the effect of cerulenin is direct or indirect, we carried out in vitro studies. Cerulenin treatment did not affect Hsp-70 gene expression in Leghorn male hepatoma and quail myoblast cell lines, suggesting that the observed effect in vivo may be mediated through the central nervous system.
Collapse
Affiliation(s)
- Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701; and
| | | | | |
Collapse
|
14
|
Tamzil M, Noor R, Hardjoswor P, Manalu W, Sumantri C. Acute Heat Stress Responses of Three Lines of Chickens with Different Heat Shock Protein (HSP)-70 Genotypes. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ijps.2013.264.272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Delezie E, Swennen Q, Buyse J, Decuypere E. The Effect of Feed Withdrawal and Crating Density in Transit on Metabolism and Meat Quality of Broilers at Slaughter Weight. Poult Sci 2007; 86:1414-23. [PMID: 17575190 DOI: 10.1093/ps/86.7.1414] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Commercial broilers are exposed to a number of stressors prior to slaughter, including feed deprivation, crating density (high vs. low), and transportation. Hence, the individual and additive or overruling effects of these stressors on welfare and energy metabolism were examined. Live weight gain, rectal temperature, physiological responses, and meat quality of broilers were determined. The fasting of broilers before being transported resulted in a decrease of triglycerides, uric acid, and triiodothyronine concentrations, indicating a negative energy balance. Feed withdrawal was also associated with a reduction in body weight, and highest body weight losses were observed after being fasted for 13 h. For some parameters there was a combined effect of feed withdrawal and crating density, whereas for others the crating density overruled the effect of previous feed withdrawal: broilers that had no access to feed before being transported had higher thyroxine and lower lactate concentrations (only at high crating density) compared with their fed counterparts before the transport process, indicating the combined effect of both actions. The distinction due to the feeding pattern could no longer be observed for the plasma uric acid, nonesterified fatty acids, triglycerides, and triiodothyronine concentrations because it was overruled by the transport effect, especially if broilers were transported at high crating density. Plasma corticosterone concentrations increased as a consequence of the procedure of transportation and peaked if broilers were crated at high density. In our study, no significant effect of preslaughter stressors on meat quality, plasma creatine kinase activity, or lipid peroxidation levels were noticed. It can be concluded that transportation at high stocking densities should be avoided to reduce economic losses and stress to broilers. Plasma hormone as well as metabolites, rectal temperature, and heat shock protein 70 mRNA all indicated the high stress level of broilers. Furthermore, this effect often overruled the feed withdrawal and transport effect, indicating the importance of crating density.
Collapse
Affiliation(s)
- E Delezie
- Faculty of Bioscience Engineering, Department of Biosystems, Division Livestock-Nutrition-Quality, University of Leuven, B-3001 Heverlee, Belgium.
| | | | | | | |
Collapse
|
16
|
Abstract
That evolution of longevity may depend on alterations in the expression of relatively few regulatory genes has been inferred from the rapid increase in lifespan during evolution of the hominid species (Cutler RG (1979) Mech Ageing Dev 9: 337-354). Also the inherent immortality of the embryonic stem cells implies that replicative senescence (Hayflick L (1997) Biochem Mosc 62: 1180-1190) as possibly aging of species are epigenetic phenomena. Evidence is presented to suggest that the epigenetic changes of the longevity determinants to a significant extend concerns the molecular chaperones. Specific involvement of RNA chaperones in cell immortalization and defective RecQ-DNA chaperones in syndromes of premature aging suggest that DNA/RNA - chaperones probably rank high among the determinants of cellular and species longevity.
Collapse
Affiliation(s)
- J Krøll
- Hafnia Unit of Biogerontology, Godthåbsvej 111,3, DK-2000, Frederiksberg, Denmark.
| |
Collapse
|