1
|
Niebrügge N, Trovato O, Praschberger R, Lieb A. Disease-Associated Dopamine Receptor D2 Variants Exhibit Functional Consequences Depending on Different Heterotrimeric G-Protein Subunit Combinations. Biomedicines 2024; 13:46. [PMID: 39857630 PMCID: PMC11761627 DOI: 10.3390/biomedicines13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations in DRD2 (WT), p.Ile212Phe (I212F), and p.Met345Arg (M345R) have been associated with hyperkinetic movement disorders and shown to alter heterotrimeric G-protein complex signaling and β-arrestin recruitment. Methods: To conduct a detailed investigation of the I212F and M345R functional phenotypes, we used the TRansdUcer PATHway (TRUPATH) assay to study heterotrimeric G-protein recruitment and the Parallel Receptorome Expression and Screening via Transcriptional Output (PRESTO-Tango) assay to evaluate transcriptional activation following arrestin translocation for β-arrestin recruitment. Results: In our study, we could confirm the reported mutant's loss-of-function phenotype in β-arrestin 2 recruitment (reduced agonist potency and decreased maximal signaling efficacy in comparison to the WT). However, a detailed analysis of basal/constitutive activity also revealed a gain-of-function phenotype for mutant M345R. For a more comprehensive investigation of heterotrimeric G-protein complex signaling, we investigated the impact of WT mutants in combination with (i) a specifically suggested assay, and (ii) the most abundantly expressed heterotrimeric G-protein complex combinations in WT receptor-enriched regions. We were able to confirm the reported gain-of-function phenotype by Rodriguez-Contreras et al. and extend it by the use of the most abundant heterotrimeric G-protein subunits, GαoA and Gαi1, β1 and β2, and γ3 and γ7, in mouse and human basal ganglia. Conclusions: Although our results indicate that the interaction of the two variants with the most highly expressed heterotrimeric G-protein complex subunit combinations also results in a gain-of-function phenotype, they also clearly demonstrate that the phenotype can be significantly altered, dependent on heterotrimeric G-protein complex expression.
Collapse
Affiliation(s)
- Nele Niebrügge
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Olga Trovato
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Roman Praschberger
- Institute of Human Genetic, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Vidal B, Levigoureux E, Chaib S, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson’s Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1257-1269. [DOI: 10.3233/jpd-212580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Background: The gold-standard treatment for Parkinson’s disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a “false neurotransmitter”. The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. Objective: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed “off” L-DOPA. Methods: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. Results: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. Conclusion: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson’s disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
| | - Elise Levigoureux
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Sarah Chaib
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Billard
- CERMEP-Imaging Platform, Bron, France
- Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
3
|
Vosahlikova M, Roubalova L, Cechova K, Kaufman J, Musil S, Miksik I, Alda M, Svoboda P. Na +/K +-ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109953. [PMID: 32360816 DOI: 10.1016/j.pnpbp.2020.109953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.
Collapse
Affiliation(s)
- Miroslava Vosahlikova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Roubalova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Kristina Cechova
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jonas Kaufman
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Musil
- Department of Trace Element Analysis, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan Miksik
- Laboratory of Translation Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Petr Svoboda
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Dudev T, Mazmanian K, Weng WH, Grauffel C, Lim C. Free and Bound Therapeutic Lithium in Brain Signaling. Acc Chem Res 2019; 52:2960-2970. [PMID: 31556294 DOI: 10.1021/acs.accounts.9b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Lithium, a first-line therapy for bipolar disorder, is effective in preventing suicide and new depressive/manic episodes. Yet, how this beguilingly simple monocation with only two electrons could yield such profound therapeutic effects remains unclear. An in-depth understanding of lithium's mechanisms of actions would help one to develop better treatments limiting its adverse side effects and repurpose lithium for treating traumatic brain injury and chronic neurodegenerative diseases. In this Account, we begin with a comparison of the physicochemical properties of Li+ and its key native rivals, Na+ and Mg2+, to provide physical grounds for their competition in protein binding sites. Next, we review the abnormal signaling pathways and proteins found in bipolar patients, who generally have abnormally high intracellular Na+ and Ca2+ concentrations, high G-protein levels, and hyperactive phosphatidylinositol signaling and glycogen synthase kinase-3β (GSK3β) activity. We briefly summarize experimental findings on how lithium, at therapeutic doses, modulates these abnormal signaling pathways and proteins. Following this survey, we address the following aspects of lithium's therapeutic actions: (1) Can Li+ displace Na+ from the allosteric Na+-binding sites in neurotransmitter transporters and G-protein coupled receptors (GPCRs); if so, how would this affect the host protein's function? (2) Why are certain Mg2+-dependent enzymes targeted by Li+? (3) How does Li+ binding to Mg2+-bound ATP/GTP (denoted as NTP) in solution affect the cofactor's conformation and subsequent recognition by the host protein? (4) How do NTP-Mg-Li complexes modulate the properties of the respective cellular receptors and signal-transducing proteins? We show that Li+ may displace Na+ from allosteric Na+-binding sites in certain GPCRs and stabilize inactive conformations, preventing these receptors from relaying signal to the respective G-proteins. It may also displace Mg2+ in enzymes containing highly cationic Mg2+-binding sites such as GSK3β, but not in enzymes containing Mg2+-binding sites with low or zero charge. We further show that Li+ binding to Mg2+-NTP in water does not alter the NTP conformation, which is locked by all three phosphates binding to Mg2+. However, bound lithium in the form of [NTP-Mg-Li]2- dianions can activate or inhibit the host protein depending on the NTP-binding pocket's shape, which determines the metal-binding mode: The ATP-binding pocket's shape in the P2X receptor is complementary to the native ATP-Mg solution conformation and nicely fits [ATP-Mg-Li]2-. However, since the ATP βγ phosphates bind Li+, bimetallic [ATP-Mg-Li]2- may be more resistant to hydrolysis than the native cofactor, enabling ATP to reside longer in the binding site and elicit a prolonged P2X response. In contrast, the elongated GTP-binding pockets in G-proteins allow only two GTP phosphates to bind Mg2+, so the GTP conformation is no longer "triply-locked". Consequently, Li+ binding to GTP-Mg can significantly alter the native cofactor's structure, lowering the activated G-protein level, thus attenuating hyperactive G-protein-mediated signaling in bipolar patients. In summary, we have presented a larger "connected" picture of lithium's diverse effects based on its competition as a free monocation with native cations or as a phosphate-bound polyanionic complex modulating the host protein function.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Vosahlikova M, Roubalova L, Ujcikova H, Hlouskova M, Musil S, Alda M, Svoboda P. Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:785-799. [DOI: 10.1007/s00210-019-01631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
7
|
Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 2018; 154:452-463. [DOI: 10.1016/j.bcp.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
8
|
18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT 1A receptor agonist for PET neuroimaging. Brain Struct Funct 2018; 223:2973-2988. [PMID: 29730825 DOI: 10.1007/s00429-018-1672-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2017] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640's nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.
Collapse
|
9
|
A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. ADVANCES IN NEUROBIOLOGY 2018; 17:201-230. [PMID: 28956334 DOI: 10.1007/978-3-319-58811-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
The most recently discovered 3',5'-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1-4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a three to tenfold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects.
Collapse
|
10
|
Pathak G, Agostino MJ, Bishara K, Capell WR, Fisher JL, Hegde S, Ibrahim BA, Pilarzyk K, Sabin C, Tuczkewycz T, Wilson S, Kelly MP. PDE11A negatively regulates lithium responsivity. Mol Psychiatry 2017; 22:1714-1724. [PMID: 27646265 PMCID: PMC5359083 DOI: 10.1038/mp.2016.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/11/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023]
Abstract
Lithium responsivity in patients with bipolar disorder has been genetically associated with Phosphodiesterase 11A (PDE11A), and lithium decreases PDE11A mRNA in induced pluripotent stem cell-derived hippocampal neurons originating from lithium-responsive patients. PDE11 is an enzyme uniquely enriched in the hippocampus that breaks down cyclic AMP and cyclic GMP. Here we determined whether decreasing PDE11A expression is sufficient to increase lithium responsivity in mice. In dorsal hippocampus and ventral hippocampus (VHIPP), lithium-responsive C57BL/6J and 129S6/SvEvTac mice show decreased PDE11A4 protein expression relative to lithium-unresponsive BALB/cJ mice. In VHIPP, C57BL/6J mice also show differences in PDE11A4 compartmentalization relative to BALB/cJ mice. In contrast, neither PDE2A nor PDE10A expression differ among the strains. The compartment-specific differences in PDE11A4 protein expression are explained by a coding single-nucleotide polymorphism (SNP) at amino acid 499, which falls within the GAF-B homodimerization domain. Relative to the BALB/cJ 499T, the C57BL/6J 499A decreases PDE11A4 homodimerization, which removes PDE11A4 from the membrane. Consistent with the observation that lower PDE11A4 expression correlates with better lithium responsiveness, we found that Pde11a knockout mice (KO) given 0.4% lithium chow for 3+ weeks exhibit greater lithium responsivity relative to wild-type (WT) littermates in tail suspension, an antidepressant-predictive assay, and amphetamine hyperlocomotion, an anti-manic predictive assay. Reduced PDE11A4 expression may represent a lithium-sensitive pathophysiology, because both C57BL/6J and Pde11a KO mice show increased expression of the pro-inflammatory cytokine interleukin-6 (IL-6) relative to BALB/cJ and PDE11A WT mice, respectively. Our finding that PDE11A4 negatively regulates lithium responsivity in mice suggests that the PDE11A SNPs identified in patients may be functionally relevant.
Collapse
Affiliation(s)
- G Pathak
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - K Bishara
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - W R Capell
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J L Fisher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - S Hegde
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - B A Ibrahim
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Pilarzyk
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - C Sabin
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - S Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - M P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
11
|
Hidalgo MPL, Caumo W, Dantas G, Franco DG, Torres ILDS, Pezzi J, Elisabetsky E, Detanico BC, Piato Â, Markus RP. 6‐Sulfatoxymelatonin as a predictor of clinical outcome in depressive patients. Hum Psychopharmacol 2011; 26:252-7. [PMID: 21681816 DOI: 10.1002/hup.1204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study established the value of the 6‐sulfatoxymelatonin (aMT6s) urine concentration as a predictor of the therapeutic response to noradrenaline reuptake inhibitors in depressive patients. METHODS Twenty-two women aged 18-60 years were selected. Depressive symptoms were assessed by using the Hamilton Depression Scale. Urine samples were collected at 0600-1200 h, 1200-1800 h, 1800-2400 h, and 2400-0600 h intervals, 1 day before and 1 day after starting on the nortriptyline treatment. Urine aMT6s concentration was analyzed by a one-way analysis of variance/Bonferroni test. Spearman's rank correlation coefficient was used to analyze the correlation between depressive symptoms after 2 weeks of antidepressant treatment and the increase in aMT6s urine concentration. RESULTS Higher and lower size effect groups were compared by independent Student's t-tests. At baseline, the 2400‐ to 0600‐h interval differed from all other intervals presenting a significantly higher aMT6s urine concentration. A significant difference in aMT6s urine concentrations was found 1 day after treatment in all four intervals. Higher size effect group had lower levels of depressive symptoms 2 weeks after the treatment. A positive correlation between depressive symptoms and the delta of aMT6s in the 2400-0600 h interval was observed. CONCLUSION Our results reinforce the hypothesis that aMT6s excretion is a predictor of clinical outcome in depression, especially in regard to noradrenaline reuptake inhibitors.
Collapse
Affiliation(s)
- Maria Paz Loayza Hidalgo
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul and Laboratory of Chronobiology of Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Markus RP, Franco DG, Carvalho LA, Gentil V, Gorenstein C. Acute increase in urinary 6-sulfatoximelatonin after clomipramine, as a predictive measure for emotional improvement. J Psychopharmacol 2010; 24:855-60. [PMID: 19264813 DOI: 10.1177/0269881109102542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Nocturnal melatonin pineal output is triggered by sympathetic outflow. Antidepressants that block norepinephrine neuronal uptake should increase pineal function. This can be monitored by measuring 6-sulfatoximelatonin (aMT6s), the main melatonin metabolite, in the urine. In this study, we compared the excretion of aMT6s before (baseline), one, and 21 days after administration of clomipramine to healthy subjects (n = 32). At the end of treatment, subjects were divided into responders (n = 12) and non-responders (n = 20) according to the improvement in their emotional state in three out of four domains (interpersonal tolerance, efficiency, well-being and feeling different from the usual self). There was no difference in aMT6s before clomipramine between responders and non-responders in any of the time intervals analysed (06:00-12:00, 12:00-18:00, 18:00-24:00 and 24:00-06:00 hours). At day one, but not at day 21, the fraction of aMT6s excreted during the time interval 24:00-06:00, relative to the total amount excreted by each subject per day, was significantly higher (P = 0.0287) than baseline (0.57 +/- 0.04) in responders. No significant difference was observed in non-responders. The increase in pineal function induced by clomipramine was restricted to day one, indicating that long-lasting adaptation restores pineal function. In addition, the day one increase in aMT6s was significantly increased only in the responders group, raising the possibility that the blocking of neuronal uptake is predictive of emotional improvement.
Collapse
Affiliation(s)
- R P Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Normalization of GRK2 protein and mRNA measures in patients with depression predict response to antidepressants. Int J Neuropsychopharmacol 2010; 13:83-91. [PMID: 19400981 DOI: 10.1017/s1461145709000364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor kinases (GRKs) interfere in receptor-G-protein coupling leading to desensitization of G-protein-mediated receptor signalling. G-protein-coupled receptor signalling and its desensitization were previously implicated in the pathophysiology, diagnosis and treatment of mood disorders. The present study aimed to evaluate alterations in GRK2 protein and mRNA levels in mononuclear leukocytes (MNL) of untreated patients with major depression and the effects and time-course of antidepressant treatments on these alterations. Repeated GRK2 protein and mRNA measurements were carried in MNL of 24 patients with major depression. Each patient was examined while untreated and after 1, 2, 3 and 4 wk of antidepressant treatment; 24 healthy subjects were also studied. GRK2 protein and mRNA levels were evaluated through immunoblot analyses using monoclonal antibodies against GRK2 and reverse transcriptase-polymerase chain reaction, respectively. GRK2 protein and mRNA levels in MNL of untreated patients with major depression were significantly lower than the measures characterizing healthy subjects. The decreased GRK2 protein and mRNA levels were alleviated by antidepressant treatment. Normalization of GRK2 measures preceded, and, thus, could predict clinical improvement by 1-2 wk. These findings support the implication of GRK2 in the pathophysiology of major depression and in the mechanism underlying antidepressant-induced receptor down-regulation and therapeutic effects. GRK2 measurements in patients with depression may potentially serve for biochemical diagnostic purposes and for monitoring and predicting response to antidepressants.
Collapse
|
14
|
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
15
|
Giaroni C, Canciani L, Zanetti E, Giuliani D, Pisani R, Oldrini R, Moro E, Trinchera M, Crema F, Lecchini S, Frigo G. Effects of chronic desipramine treatment on α2-adrenoceptors and μ-opioid receptors in the guinea pig cortex and hippocampus. Eur J Pharmacol 2008; 579:116-25. [DOI: 10.1016/j.ejphar.2007.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2007] [Revised: 08/02/2007] [Accepted: 10/05/2007] [Indexed: 12/30/2022]
|