1
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
2
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
3
|
Kaneva K, Schurr TG, Tatarinova TV, Buckley J, Merkurjev D, Triska P, Liu X, Done J, Maglinte DT, Deapen D, Hwang A, Schiffman JD, Triche TJ, Biegel JA, Gai X. Mitochondrial DNA haplogroup, genetic ancestry, and susceptibility to Ewing sarcoma. Mitochondrion 2022; 67:6-14. [PMID: 36115539 PMCID: PMC9997094 DOI: 10.1016/j.mito.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology, Oncology, and Blood and Marrow Transplant Program, Children's Center for Cancer and Blood Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petr Triska
- Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Done
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis Deapen
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amie Hwang
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Timothy J Triche
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mitochondrial Inheritance in Phytopathogenic Fungi-Everything Is Known, or Is It? Int J Mol Sci 2020; 21:ijms21113883. [PMID: 32485941 PMCID: PMC7312866 DOI: 10.3390/ijms21113883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.
Collapse
|
5
|
Peng W, Cai G, Xia Y, Chen J, Wu P, Wang Z, Li G, Wei D. Mitochondrial Dysfunction in Atherosclerosis. DNA Cell Biol 2019; 38:597-606. [PMID: 31095428 DOI: 10.1089/dna.2018.4552] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are highly dynamic organelles beyond powerhouses of a cell. These components also play important roles in cell homeostasis by regulating cell function and phenotypic modulation. Atherosclerosis is the leading cause of morbidity and mortality in developed and developing countries. Mitochondrial dysfunction has been increasingly associated with the initiation and progression of atherosclerosis by elevating the production of reactive oxygen species and mitochondrial oxidative stress damage, mitochondrial dynamics dysfunction, and energy supply. In this review, we describe the progression of the link between mitochondrial dysfunction and atherosclerosis and its potential regulation mechanisms.
Collapse
Affiliation(s)
- Wenxi Peng
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Guoding Cai
- 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Yiping Xia
- 3 University of South China of Nursing, Hengyang, P.R. China
| | - Jinna Chen
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Peng Wu
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zuo Wang
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Guohua Li
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Dangheng Wei
- 1 Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
6
|
Guha M, Srinivasan S, Raman P, Jiang Y, Kaufman BA, Taylor D, Dong D, Chakrabarti R, Picard M, Carstens RP, Kijima Y, Feldman M, Avadhani NG. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1060-1071. [PMID: 29309924 DOI: 10.1016/j.bbadis.2018.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer is a leading cause of cancer-related deaths in women worldwide. Patients with triple negative breast cancer (TNBCs), a highly aggressive tumor subtype, have a particularly poor prognosis. Multiple reports demonstrate that altered content of the multicopy mitochondrial genome (mtDNA) in primary breast tumors correlates with poor prognosis. We earlier reported that mtDNA copy number reduction in breast cancer cell lines induces an epithelial-mesenchymal transition associated with metastasis. However, it is unknown whether the breast tumor subtypes (TNBC, Luminal and HER2+) differ in the nature and amount of mitochondrial defects and if mitochondrial defects can be used as a marker to identify tumors at risk for metastasis. By analyzing human primary tumors, cell lines and the TCGA dataset, we demonstrate a high degree of variability in mitochondrial defects among the tumor subtypes and TNBCs, in particular, exhibit higher frequency of mitochondrial defects, including reduced mtDNA content, mtDNA sequence imbalance (mtRNR1:ND4), impaired mitochondrial respiration and metabolic switch to glycolysis which is associated with tumorigenicity. We identified that genes involved in maintenance of mitochondrial structural and functional integrity are differentially expressed in TNBCs compared to non-TNBC tumors. Furthermore, we identified a subset of TNBC tumors that contain lower expression of epithelial splicing regulatory protein (ESRP)-1, typical of metastasizing cells. The overall impact of our findings reported here is that mitochondrial heterogeneity among TNBCs can be used to identify TNBC patients at risk of metastasis and the altered metabolism and metabolic genes can be targeted to improve chemotherapeutic response.
Collapse
Affiliation(s)
- Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Pichai Raman
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, USA; Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, USA
| | - Yuefu Jiang
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, USA; Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, USA
| | - Dawei Dong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA
| | - Russ P Carstens
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuko Kijima
- Kagoshima University, Department of Digestive, Breast and Thyroid Surgery, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan
| | - Mike Feldman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
7
|
Jin EH, Sung JK, Lee SI, Hong JH. Mitochondrial NADH Dehydrogenase Subunit 3 ( MTND3) Polymorphisms are Associated with Gastric Cancer Susceptibility. Int J Med Sci 2018; 15:1329-1333. [PMID: 30275759 PMCID: PMC6158656 DOI: 10.7150/ijms.26881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence indicates that mitochondrial DNA alterations contribute to cancer development and progression. In this study, we evaluated the relationship between polymorphisms of mitochondrial NADH dehydrogenase subunit 3 (MTND3) and the risk of gastric cancer (GC). Five single nucleotide polymorphisms (SNPs; rs28358278, rs2853826, rs201397417, rs41467651, and rs28358275) were identified and genotyped in 377 patients with GC patients and 363 controls by direct sequencing. The rs41467651 T allele was significantly associated with GC risk [adjusted odds ratio (OR) = 2.11, 95% confidence interval (CI) = 1.25-3.55, P = 0.005). In stratified analysis, rs28358278, rs2853826, and rs41467651 were associated with subgroups of GC, with the rs28358278 G, rs2853826 T, and rs41467651 T alleles associated with an increased GC risk in females (adjusted OR = 1.70, 95% CI = 1.08-2.69, P = 0.023; adjusted OR = 1.78, 95% CI = 1.11-2.85, P = 0.016; adjusted OR = 2.07, 95% CI = 1.04-4.12, P = 0.038, respectively). The rs441467651 T allele was also related with GC risk in diffuse-type subjects compared to that of controls (adjusted OR = 2.61, 95% CI = 1.43-4.89, P = 0.002). In addition, The rs441467651 T allele was significantly related with increased GC risk regardless of lymph node metastasis (LNM), T classification, and tumor stage compared to that of controls (adjusted OR = 2.00, 95% CI = 1.12-3.55, P = 0.019 in LNM-negative subjects; adjusted OR = 2.10, 95% CI = 1.05-4.22, P = 0.0379 in LNM-positive subjects; adjusted OR = 1.82, 95% CI = 1.02-3.24, P = 0.042 in T1/T2 subjects; adjusted OR = 2.60, 95% CI = 1.29-5.24, P = 0.007 in T3/T4 subjects; adjusted OR = 1.91, 95% CI = 1.09-3.34, P = 0.025 in tumor stage I (A+B)/II (A+B+C) subjects; adjusted OR = 2.36, 95% CI = 1.12-5.13, P = 0.025 in tumor stage III (A+B+C) subjects) compared to that of controls. Our findings suggest that the rs28358278, rs2853826, and rs41467651 polymorphisms of MTND3 increase the susceptibility to GC development.
Collapse
Affiliation(s)
- Eun-Heui Jin
- Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jae Kyu Sung
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jang Hee Hong
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea.,Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
10
|
Su PF, Mau YL, Guo Y, Li CI, Liu Q, Boice JD, Shyr Y. Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset. Stat Appl Genet Mol Biol 2017; 16:47-58. [PMID: 28248637 DOI: 10.1515/sagmb-2016-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To assess the effect of chemotherapy on mitochondrial genome mutations in cancer survivors and their offspring, a study sequenced the full mitochondrial genome and determined the mitochondrial DNA heteroplasmic (mtDNA) mutation rate. To build a model for counts of heteroplasmic mutations in mothers and their offspring, bivariate Poisson regression was used to examine the relationship between mutation count and clinical information while accounting for the paired correlation. However, if the sequencing depth is not adequate, a limited fraction of the mtDNA will be available for variant calling. The classical bivariate Poisson regression model treats the offset term as equal within pairs; thus, it cannot be applied directly. In this research, we propose an extended bivariate Poisson regression model that has a more general offset term to adjust the length of the accessible genome for each observation. We evaluate the performance of the proposed method with comprehensive simulations, and the results show that the regression model provides unbiased parameter estimations. The use of the model is also demonstrated using the paired mtDNA dataset.
Collapse
|
11
|
Albayrak L, Khanipov K, Pimenova M, Golovko G, Rojas M, Pavlidis I, Chumakov S, Aguilar G, Chávez A, Widger WR, Fofanov Y. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome. BMC Genomics 2016; 17:1017. [PMID: 27955616 PMCID: PMC5153897 DOI: 10.1186/s12864-016-3375-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 12/05/2016] [Indexed: 02/03/2023] Open
Abstract
Background Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Results Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Conclusion Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3375-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Levent Albayrak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Computer Science, University of Houston, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Computer Science, University of Houston, Houston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark Rojas
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ioannis Pavlidis
- Department of Computer Science, University of Houston, Houston, TX, USA
| | - Sergei Chumakov
- Department of Physics, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Gerardo Aguilar
- Department of Physics, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Arturo Chávez
- Department of Physics, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - William R Widger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0144, USA. .,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
13
|
Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genomics 2015; 47:299-307. [PMID: 26038395 DOI: 10.1152/physiolgenomics.00096.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions. Emerging findings indicate that epigenetic factors can be targets or instruments of mitochondrial-nuclear cross talk. Additionally, the growing interest into mtDNA epigenetic modifications opens new avenues into the interaction mechanisms between mitochondria and nucleus. In this review we summarize the points of mitochondrial and nuclear reciprocal control involving epigenetic factors, focusing on the role of mitochondrial genome and metabolism in shaping epigenetic modulation of gene expression. The relevance of the new findings on the methylation of mtDNA is also highlighted as a new frontier in the complex scenario of mitochondrial-nuclear communication.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy;
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy; and
| | | |
Collapse
|
14
|
Samuels DC, Han L, Li J, Quanghu S, Clark TA, Shyr Y, Guo Y. Finding the lost treasures in exome sequencing data. Trends Genet 2013; 29:593-9. [PMID: 23972387 DOI: 10.1016/j.tig.2013.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 01/04/2023]
Abstract
Exome sequencing is one of the most cost-efficient sequencing approaches for conducting genome research on coding regions. However, significant portions of the reads obtained in exome sequencing come from outside of the designed target regions. These additional reads are generally ignored, potentially wasting an important source of genomic data. There are three major types of unintentionally sequenced read that can be found in exome sequencing data: reads in introns and intergenic regions, reads in the mitochondrial genome, and reads originating in viral genomes. All of these can be used for reliable data mining, extending the utility of exome sequencing. Large-scale exome sequencing data repositories, such as The Cancer Genome Atlas (TCGA), the 1000 Genomes Project, National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project, and The Sequence Reads Archive, provide researchers with excellent secondary data-mining opportunities to study genomic data beyond the intended target regions.
Collapse
Affiliation(s)
- David C Samuels
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, 37232, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Nagaraj NS, Singh OV. Integrating genomics and proteomics-oriented biomarkers to comprehend lung cancer. ACTA ACUST UNITED AC 2013; 3:167-80. [PMID: 23485163 DOI: 10.1517/17530050902725125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer deaths worldwide. Recent years have brought tremendous progress in the development of genomic and proteomic platforms to study lung cancer progression and biomarker identification. OBJECTIVE To evaluate and integrate potential innovations of 'omics' (e.g., genomics and proteomics) technologies in dissecting biomarkers for lung cancer. METHODS Omics technologies permit simultaneous monitoring of many hundreds or thousands of macro and small molecules, as well as functional monitoring of multiple pivotal cellular pathways. Discussion follows to explore the principal challenges in the development of cancer biomarkers integrating genomics with proteomics data sets with their functional counterparts in conjunction with clinical data. RESULTS/CONCLUSION Sets of genes and gene interactions affecting different subsets of cancers can be determined using genomics in lung cancer. Proteomic studies have generated numerous functional data sets of potential diagnostic, prognostic and therapeutic significance in lung cancer. It is likely that omics will take a central place in the understanding, diagnosis, monitoring and treatment of lung cancer. Here the potential benefits and pitfalls of these methodologies are reviewed for the faster discovery of therapeutically valuable biomarkers for lung cancer.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Vanderbilt University School of Medicine, Division of Surgical Oncology, Department of Surgery, 1161 21st Ave S., D2300 MCN, Nashville, TN 37232, USA +1 615 509 1565 , +1 615 322 6174 ,
| | | |
Collapse
|
16
|
Oak CH, Wilson D, Lee HJ, Lim HJ, Park EK. Potential molecular approaches for the early diagnosis of lung cancer (review). Mol Med Rep 2012; 6:931-6. [PMID: 22923136 DOI: 10.3892/mmr.2012.1042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of mortality from cancer among men and women worldwide. More individuals die each year of lung cancer than of colon, breast and prostate cancer combined. Despite new diagnostic techniques, the overall 5-year survival rate remains at approximately 15% and the majority of patients still present with advanced disease. Therefore, lung cancer is the most lethal cancer at present. Diagnosing and treating cancer at its early stages, ideally during the precancerous stages, could increase the 5-year survival rate by 3-4‑fold, with the possibility of cure. To date, no screening method has been shown to decrease the disease-specific mortality rate. This review describes issues related to early lung cancer screening and their rationale, the management of primary cancers detected by screening and the different approaches that have been tested for cancer screening; these include imaging techniques, bronchoscopies and molecular screening, such as analysis of epigenomics using different noninvasive or invasive sources, such as blood, sputum, bronchoscopic samples and exhaled breath.
Collapse
Affiliation(s)
- Chul Ho Oak
- Department of Internal Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis. Exp Cell Res 2012; 318:2215-25. [PMID: 22705584 DOI: 10.1016/j.yexcr.2012.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022]
Abstract
We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.
Collapse
|
18
|
Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012; 7:326-34. [PMID: 22419065 DOI: 10.4161/epi.19547] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Wilhelm Johannsen Centre for Functional Genome Research, Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat Res 2012; 744:154-60. [PMID: 22387842 DOI: 10.1016/j.mrgentox.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 01/12/2023]
Abstract
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.
Collapse
|
20
|
Ebner S, Lang R, Mueller EE, Eder W, Oeller M, Moser A, Koller J, Paulweber B, Mayr JA, Sperl W, Kofler B. Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians. PLoS One 2011; 6:e27192. [PMID: 22174736 PMCID: PMC3235102 DOI: 10.1371/journal.pone.0027192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022] Open
Abstract
Background Because mitochondria play an essential role in energy metabolism, generation of reactive oxygen species (ROS), and apoptosis, sequence variation in the mitochondrial genome has been postulated to be a contributing factor to the etiology of multifactorial age-related diseases, including cancer. The aim of the present study was to compare the frequencies of mitochondrial DNA (mtDNA) haplogroups as well as control region (CR) polymorphisms of patients with malignant melanoma (n = 351) versus those of healthy controls (n = 1598) in Middle Europe. Methodology and Principal Findings Using primer extension analysis and DNA sequencing, we identified all nine major European mitochondrial haplogroups and known CR polymorphisms. The frequencies of the major mitochondrial haplogroups did not differ significantly between patients and control subjects, whereas the frequencies of the one another linked CR polymorphisms A16183C, T16189C, C16192T, C16270T and T195C were significantly higher in patients with melanoma compared to the controls. Regarding clinical characteristics of the patient cohort, none of the nine major European haplogroups was associated with either Breslow thickness or distant metastasis. The CR polymorphisms A302CC-insertion and T310C-insertion were significantly associated with mean Breslow thickness, whereas the CR polymorphism T16519C was associated with metastasis. Conclusions and Significance Our results suggest that mtDNA variations could be involved in melanoma etiology and pathogenesis, although the functional consequence of CR polymorphisms remains to be elucidated.
Collapse
Affiliation(s)
- Sabine Ebner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Edith E. Mueller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Waltraud Eder
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Michaela Oeller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Moser
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Josef Koller
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Johannes A. Mayr
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
21
|
Jandova J, Shi M, Norman KG, Stricklin GP, Sligh JE. Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype. Biochim Biophys Acta Mol Basis Dis 2011; 1822:293-300. [PMID: 22119597 DOI: 10.1016/j.bbadis.2011.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
Abstract
There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ(0) cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.
Collapse
Affiliation(s)
- Jana Jandova
- Southern Arizona VA Healthcare System and Department of Medicine, Dermatology Division, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
22
|
Jandova J, Eshaghian A, Shi M, Li M, King LE, Janda J, Sligh JE. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry. J Invest Dermatol 2011; 132:421-8. [PMID: 22011905 PMCID: PMC3258376 DOI: 10.1038/jid.2011.320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Medicine, Dermatology Division, Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Association of mtDNA D-loop polymorphisms with risk of gastric cancer in Chinese population. Pathol Oncol Res 2011; 17:735-42. [PMID: 21461645 DOI: 10.1007/s12253-011-9378-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
The aim of present study was to evaluate the association of common polymorphisms detected in mitochondrial DNA (mtDNA) D-loop region (mononucleotide repetitive D310, single nucleotide polymorphism (SNP) D16521) with susceptibility to gastric cancer (GC) in northwestern Chinese population. A total of 180 GC patients and 218 healthy controls were investigated by using PCR- denaturing high performance liquid chromatography (DHPLC) assay. Genotype and allele distributions and haplotype construction were analyzed in case-control study. We found D310 and D16521 heteroplasmy were significantly different between GC cases and controls (p < 0.05), and D16521 homoplasmy showed association with histological grade of GC (p < 0.05). Haplotype 7C/T, 8C/C and 9C/C had significant association with GC risk implied from analysis of D310 and D16521. Taken together, these findings suggested that mtDNA D-Loop polymorphisms and haplotypes may contribute to genetic susceptibility to GC in Chinese population.
Collapse
|
24
|
Wang H, Dai J. [Changes on mitochondrial DNA content in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:141-5. [PMID: 21342645 PMCID: PMC5999772 DOI: 10.3779/j.issn.1009-3419.2011.02.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
背景与目的 已有的研究表明:线粒体DNA(mitochondrial DNA, mtDNA)突变和拷贝数的改变和肿瘤有着密切联系;大多数实体性肿瘤中mtDNA拷贝数有明显降低。本研究旨在探讨线粒体基因组含量的改变和原发性非小细胞肺癌(non-small cell lung cancer, NSCLC)的关系。 方法 通过实时荧光定量PCR,对肺癌及相对应的癌旁肺组织mtDNA的含量进行精确定量(拷贝数/细胞)。 结果 肺癌组织mtDNA的平均拷贝数/细胞为395±125,而相对应的正常肺组织为733±196,前者明显低于后者(P < 0.001)。肺癌mtDNA含量的改变与患者性别、年龄、是否吸烟及肿瘤的病理类型无关(P > 0.05)。 结论 mtDNA含量的改变与NSCLC的发生发展密切相关,同时也可能影响其治疗和预后。
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Thoracic Surgery, Xinqiao Hospital, Chongqing 400037, China
| | | |
Collapse
|
25
|
Genetic insights into OXPHOS defect and its role in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:620-5. [PMID: 21074512 DOI: 10.1016/j.bbabio.2010.10.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/24/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022]
Abstract
Warburg proposed that cancer originates from irreversible injury to mitochondrial oxidative phosphorylation (mtOXPHOS), which leads to an increase rate of aerobic glycolysis in most cancers. However, despite several decades of research related to Warburg effect, very little is known about the underlying genetic cause(s) of mtOXPHOS impairment in cancers. Proteins that participate in mtOXPHOS are encoded by both mitochondrial DNA (mtDNA) as well as nuclear DNA. This review describes mutations in mtDNA and reduced mtDNA copy number, which contribute to OXPHOS defects in cancer cells. Maternally inherited mtDNA renders susceptibility to cancer, and mutation in the nuclear encoded genes causes defects in mtOXPHOS system. Mitochondria damage checkpoint (mitocheckpoint) induces epigenomic changes in the nucleus, which can reverse injury to OXPHOS. However, irreversible injury to OXPHOS can lead to persistent mitochondrial dysfunction inducing genetic instability in the nuclear genome. Together, we propose that "mitocheckpoint" led epigenomic and genomic changes must play a key role in reversible and irreversible injury to OXPHOS described by Warburg. These epigenetic and genetic changes underlie the Warburg phenotype, which contributes to the development of cancer.
Collapse
|
26
|
Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancers (Basel) 2010; 2:190-208. [PMID: 24281040 PMCID: PMC3827599 DOI: 10.3390/cancers2010190] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/02/2010] [Accepted: 03/19/2010] [Indexed: 12/16/2022] Open
Abstract
A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In cancer, a biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis and epidemiology. These markers can be assayed in non-invasively collected biofluids. However, few cancer biomarkers are highly sensitive and specific for cancer detection at the present time. Consequently, biomarkers are not yet ready for routine use due to challenges in their clinical validation for early disease detection, diagnosis and monitoring to improve long-term survival of patients.
Collapse
Affiliation(s)
- Alok Mishra
- Institute of Cytology and Preventive Oncology, Division of Molecular Oncology, Noida, 201301, UP, India; E-Mail:
| | - Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Suite 5100, Bethesda, MD 20892-7324, USA
| |
Collapse
|
27
|
Abstract
Identification of hereditary factors that predispose to cancer allows targeted cancer screening and better quantification of environmental risk factors. The ability to identify which single nucleotide polymorphisms (SNPs) are associated with cancer or segregate with disease in families allows high-risk loci to be identified. In this chapter, two platforms for analysing SNPs are discussed, the Affymetrix and Illumina systems. Application of both platforms requires the same principles of good laboratory practice but there are important differences in materials and methods, which will be discussed.
Collapse
Affiliation(s)
- Julie Earl
- Division of Surgery and Oncology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
28
|
|
29
|
Zhang SP, Song SJ, Li YX. [Association between mitochondrial DNA mutations and cancer in human]. YI CHUAN = HEREDITAS 2009; 30:263-8. [PMID: 18331991 DOI: 10.3724/sp.j.1005.2008.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria are essential organelles that generate cellular energy in cells. Mutations of mitochondrial DNA (mtDNA) have been identified in various types of cancer, suggesting a complex relationship between mtDNA and cancer. This review focuses on the possible correlation between the mtDNA mutation and cancer. Additionally, possible causes for mtDNA mutations and applications for detecting mtDNA mutations in cancer are discussed.
Collapse
Affiliation(s)
- Shu-Ping Zhang
- College of Life Science, Capital Normal University, Beijing 100037, China.
| | | | | |
Collapse
|
30
|
Zhidkov I, Livneh EA, Rubin E, Mishmar D. MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints. Genome Res 2009; 19:576-80. [PMID: 19211544 DOI: 10.1101/gr.086462.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple human mutational landscapes of normal and cancer conditions are currently available. However, while the unique mutational patterns of tumors have been extensively studied, little attention has been paid to similarities between malignant and normal conditions. Here we compared the pattern of mutations in the mitochondrial genomes (mtDNAs) of cancer (98 sequences) and natural populations (2400 sequences). De novo mtDNA mutations in cancer preferentially colocalized with ancient variants in human phylogeny. A significant portion of the cancer mutations was organized in recurrent combinations (COMs), reaching a length of seven mutations, which also colocalized with ancient variants. Thus, by analyzing similarities rather than differences in patterns of mtDNA mutations in tumor and human evolution, we discovered evidence for similar selective constraints, suggesting a functional potential for these mutations.
Collapse
Affiliation(s)
- Ilia Zhidkov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
31
|
Gochhait S, Bhatt A, Sharma S, Singh YP, Gupta P, Bamezai RN. Concomitant presence of mutations in mitochondrial genome andp53in cancer development-A study in north Indian sporadic breast and esophageal cancer patients. Int J Cancer 2008; 123:2580-6. [DOI: 10.1002/ijc.23817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Rigoli L, Di Bella C, Verginelli F, Falchetti M, Bersiga A, Rocco A, Nardone G, Mariani-Costantini R, Caruso RA. Histological heterogeneity and somatic mtDNA mutations in gastric intraepithelial neoplasia. Mod Pathol 2008; 21:733-41. [PMID: 18425082 DOI: 10.1038/modpathol.2008.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Somatic mutations of mitochondrial DNA (mtDNA) are associated with various types of human cancer. To elucidate their role in gastric carcinogenesis, we analyzed mutations in the displacement loop region of mtDNA in 24 paraffin-embedded gastric intraepithelial neoplasias (formerly dysplasia) from a high gastric cancer risk area in northern Italy. Helicobacter pylori infection was assessed by histological examination (Giemsa staining). Gastritis was classified according to the guidelines of the Updated Sydney System. The mtDNA displacement loop region was amplified and sequenced from gastric intraepithelial neoplasia samples and adjacent non-neoplastic gastric mucosa. The gastric intraepithelial neoplasias were divided into two groups by their association with H. pylori gastritis. Group A with lesions arising on a background of H. pylori-positive gastritis contained 7 patients, and group B with lesions associated with H. pylori-negative gastritis contained 17 patients. Group A had a larger proportion of high-grade lesions than group B and showed a foveolar phenotype (type II dysplasia). Group B had a larger proportion of cases with mtDNA displacement loop region mutations than group A (P=0.004, Fisher's exact test) and exhibited an intestinal phenotype. No evidence of heteroplasmic variants in the mtDNA displacement loop, suggestive of mutations, was detected in gastric biopsies from 25 H. pylori-negative subjects and 60 cancer-unaffected H. pylori-positive patients. These results provide further evidence for the morphologic and mtDNA biomolecular differences of gastric intraepithelial neoplasias, and suggest the existence of two distinct pathways to gastric cancer--corpus-dominant H. pylori gastritis and the atrophy-metaplasia pathway.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Pediatrics, University Hospital, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Setiawan VW, Chu LH, John EM, Ding YC, Ingles SA, Bernstein L, Press MF, Ursin G, Haiman CA, Neuhausen SL. Mitochondrial DNA G10398A variant is not associated with breast cancer in African-American women. CANCER GENETICS AND CYTOGENETICS 2008; 181:16-9. [PMID: 18262047 PMCID: PMC3225405 DOI: 10.1016/j.cancergencyto.2007.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
Abstract
Mitochondria play important roles in cellular energy production, free radical generation, and apoptosis. In a previous report, the mitochondrial DNA (mtDNA) G10398A (Thr-->Ala) polymorphism was associated with breast cancer risk in African-American women [Cancer Res 2005;65:8028-33]. We sought to replicate the association by genotyping the G10398A polymorphism in multiple established population-based case-control studies of breast cancer in African-American women. The 10398A allele was not significantly associated with risk in any of the studies: San Francisco (542 cases, 282 controls, odds ratio OR = 1.73, 95% confidence interval CI = 0.87-3.47, P = 0.12); Multiethnic Cohort (391 cases, 460 controls, OR = 1.08, 95% CI = 0.62-1.86, P = 0.79); and CARE and LIFE (524 cases, 236 controls, OR = 0.81, 95% CI = 0.43-1.52, P = 0.50). With data pooled across the studies (1,456 cases and 978 controls), no significant association was observed with the 10398A allele (OR = 1.14, 95% CI = 0.80-1.62, P = 0.47, test for heterogeneity = 0.30). In analysis of advanced breast cancer cases (n = 674), there was also no significant association (OR = 1.18, 95% CI = 0.76-1.82, P = 0.46). Our results do not support the hypothesis that the mtDNA G10398A polymorphism is, as has previously been reported, a marker of breast cancer risk in African Americans.
Collapse
Affiliation(s)
- Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|