1
|
Ngwa DN, Agrawal A. Structurally Altered, Not Wild-Type, Pentameric C-Reactive Protein Inhibits Formation of Amyloid-β Fibrils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1180-1188. [PMID: 35977795 PMCID: PMC9492646 DOI: 10.4049/jimmunol.2200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
The structure of wild-type pentameric C-reactive protein (CRP) is stabilized by two calcium ions that are required for the binding of CRP to its ligand phosphocholine. CRP in its structurally altered pentameric conformations also binds to proteins that are denatured and aggregated by immobilization on microtiter plates; however, the identity of the ligand on immobilized proteins remains unknown. We tested the hypotheses that immobilization of proteins generated an amyloid-like structure and that amyloid-like structure was the ligand for structurally altered pentameric CRP. We found that the Abs to amyloid-β peptide 1-42 (Aβ) reacted with immobilized proteins, indicating that some immobilized proteins express an Aβ epitope. Accordingly, four different CRP mutants capable of binding to immobilized proteins were constructed, and their binding to fluid-phase Aβ was determined. All CRP mutants bound to fluid-phase Aβ, suggesting that Aβ is a ligand for structurally altered pentameric CRP. In addition, the interaction between CRP mutants and Aβ prevented the formation of Aβ fibrils. The growth of Aβ fibrils was also halted when CRP mutants were added to growing fibrils. Biochemical analyses of CRP mutants revealed altered topology of the Ca2+-binding site, suggesting a role of this region of CRP in binding to Aβ. Combined with previous reports that structurally altered pentameric CRP is generated in vivo, we conclude that CRP is a dual pattern recognition molecule and an antiamyloidogenic protein. These findings have implications for Alzheimer's and other neurodegenerative diseases caused by amyloidosis and for the diseases caused by the deposition of otherwise fluid-phase proteins.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Alok Agrawal
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| |
Collapse
|
2
|
Torzewski M. C-Reactive Protein: Friend or Foe? Phylogeny From Heavy Metals to Modified Lipoproteins and SARS-CoV-2. Front Cardiovasc Med 2022; 9:797116. [PMID: 35402541 PMCID: PMC8987351 DOI: 10.3389/fcvm.2022.797116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Animal C-reactive protein (CRP) has a widespread existence throughout phylogeny implying that these proteins have essential functions mandatory to be preserved. About 500 million years of evolution teach us that there is a continuous interplay between emerging antigens and components of innate immunity. The most archaic physiological roles of CRP seem to be detoxication of heavy metals and other chemicals followed or accompanied by an acute phase response and host defense against bacterial, viral as well as parasitic infection. On the other hand, unusual antigens have emerged questioning the black-and-white perception of CRP as being invariably beneficial. Such antigens came along either as autoantigens like excessive tissue-stranded modified lipoprotein due to misdirected food intake linking CRP with atherosclerosis with an as yet open net effect, or as foreign antigens like SARS-CoV-2 inducing an uncontrolled CRP-mediated autoimmune response. The latter two examples impressingly demonstrate that a component of ancient immunity like CRP should not be considered under identical “beneficial” auspices throughout phylogeny but might effect quite the reverse as well.
Collapse
|
3
|
Thirumalai A, Singh SK, Hammond DJ, Gang TB, Ngwa DN, Pathak A, Agrawal A. Purification of recombinant C-reactive protein mutants. J Immunol Methods 2017; 443:26-32. [PMID: 28167277 DOI: 10.1016/j.jim.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
C-reactive protein (CRP) is an evolutionarily conserved protein, a component of the innate immune system, and an acute phase protein in humans. In addition to its raised level in blood in inflammatory states, CRP is also localized at sites of inflammation including atherosclerotic lesions, arthritic joints and amyloid plaque deposits. Results of in vivo experiments in animal models of inflammatory diseases indicate that CRP is an anti-pneumococcal, anti-atherosclerotic, anti-arthritic and an anti-amyloidogenic molecule. The mechanisms through which CRP functions in inflammatory diseases are not fully defined; however, the ligand recognition function of CRP in its native and non-native pentameric structural conformations and the complement-activating ability of ligand-complexed CRP have been suggested to play a role. One tool to understand the structure-function relationships of CRP and determine the contributions of the recognition and effector functions of CRP in host defense is to employ site-directed mutagenesis to create mutants for experimentation. For example, CRP mutants incapable of binding to phosphocholine are generated to investigate the importance of the phosphocholine-binding property of CRP in mediating host defense. Recombinant CRP mutants can be expressed in mammalian cells and, if expressed, can be purified from the cell culture media. While the methods to purify wild-type CRP are well established, different purification strategies are needed to purify various mutant forms of CRP if the mutant does not bind to either calcium or phosphocholine. In this article, we report the methods used to purify pentameric recombinant wild-type and mutant CRP expressed in and secreted by mammalian cells.
Collapse
Affiliation(s)
- Avinash Thirumalai
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - David J Hammond
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
4
|
Regulated conformation changes in C-reactive protein orchestrate its role in atherogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang MS, Reed SM. Direct visualization of electrophoretic mobility shift assays using nanoparticle-aptamer conjugates. Electrophoresis 2011; 33:348-51. [PMID: 22170687 DOI: 10.1002/elps.201100308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 06/26/2011] [Accepted: 07/05/2011] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate that aptamers tethered to gold nanoparticles enable direct visualization of protein-oligonucleotide interactions during gel electrophoresis. This technique is used to confirm that an aptamer previously identified as binding to C-reactive protein (CRP) only binds to the monomeric form of CRP. While native, pentameric CRP (pCRP) is used in clinical assays to predict cardiovascular disease (CVD) risk, it is the monomeric isoform that is more strongly associated with pro-inflammatory and pro-atherogenic effects. To visualize this selectivity, the CRP-aptamer was conjugated to streptavidin-coated gold nanoparticles and the mobility of the free oligonucleotide-nanoparticle conjugate (ON-NP) and the protein/ON-NP complex bands were visualized and recorded during electrophoresis using a simple digital camera. At a concentration of 6 μg/mL, monomeric CRP showed a significant decrease in the observed ON-NP mobility, whereas no change in mobility was observed with pCRP up to 18 μg/mL. Advantages of this nanoparticle-based electrophoretic mobility shift assay (NP-EMSA) over the traditional EMSA include real-time detection of protein-oligonucleotide interactions, the avoidance of harmful radioisotopes, and elimination of the need for expensive gel imagers. The availability of both the NP-EMSA technique and an mCRP-specific probe will allow for improved clinical diagnostic to more accurately predict future CVD risk.
Collapse
Affiliation(s)
- Min S Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | | |
Collapse
|
6
|
Wang MS, Black JC, Knowles MK, Reed SM. C-reactive protein (CRP) aptamer binds to monomeric but not pentameric form of CRP. Anal Bioanal Chem 2011; 401:1309-18. [PMID: 21725632 DOI: 10.1007/s00216-011-5174-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/02/2011] [Accepted: 06/09/2011] [Indexed: 12/24/2022]
Abstract
Native C-reactive protein (CRP) is composed of five identical subunits arranged in a pentameric structure (pCRP). Binding of pCRP to damaged cell membranes produces a second isoform, modified CRP, which has similar antigenicity to isolated monomeric subunits of CRP (mCRP). Emerging evidence indicates that modified CRP plays a role in inflammation and atherosclerosis, however, there are very few techniques that can distinguish the different isoforms of CRP. Here we show that an RNA aptamer binds specifically to mCRP and not to pCRP. Using this aptamer, we describe a simple, fast, and sensitive assay to detect nanomolar concentrations of mCRP using fluorescence anisotropy. In addition, we show that this aptamer can be used to detect mCRP in polyacrylamide gels and bound to a surface using total internal reflection fluorescence microscopy. The biological activity of the mCRP we prepared by heating pCRP with 0.1% sodium dodecyl sulfate was confirmed by observing binding to the complement protein, C1q. This probe provides an important tool for CRP research and has the potential to improve clinical diagnostics that predict risk for cardiovascular disease.
Collapse
Affiliation(s)
- Min S Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | |
Collapse
|
7
|
Hammond DJ, Singh SK, Thompson JA, Beeler BW, Rusiñol AE, Pangburn MK, Potempa LA, Agrawal A. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. J Biol Chem 2010; 285:36235-44. [PMID: 20843812 PMCID: PMC2975246 DOI: 10.1074/jbc.m110.142026] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/28/2010] [Indexed: 12/20/2022] Open
Abstract
C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution.
Collapse
Affiliation(s)
| | | | | | | | - Antonio E. Rusiñol
- Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Michael K. Pangburn
- the Department of Biochemistry, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708, and
| | | | | |
Collapse
|
8
|
Singh SK, Hammond DJ, Beeler BW, Agrawal A. The binding of C-reactive protein, in the presence of phosphoethanolamine, to low-density lipoproteins is due to phosphoethanolamine-generated acidic pH. Clin Chim Acta 2009; 409:143-4. [PMID: 19716812 DOI: 10.1016/j.cca.2009.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
9
|
Thirumalai A, Singh SK, Hammond DJ, Gang TB, Ngwa DN, Pathak A, Agrawal A. Probing the phosphocholine-binding site of human C-reactive protein by site-directed mutagenesis. J Biol Chem 1992; 267:25353-8. [PMID: 1460031 PMCID: PMC5317095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alok Agrawal
- Corresponding author at: Department of Biomedical Sciences, Quillen College of Medicine, P. O. Box 70577, East Tennessee State University, Johnson City, TN 37614, USA, Tel.: +1 423 439 6336; fax: +1 423 439 8044,
| |
Collapse
|